
Web Applications: technologies and models

- 1 -

WEB APPLICATIONS
technologies and models

SECOND DRAFT

Web Applications: technologies and models

- 2 -

Web Applications: technologies and models

- 3 -

TABLE OF CONTENTS

PREFACE ..10
CHAPTER 1...11

WEB APPLICATION OVERVIEW...11
1.1 INTRODUCTION..11
1.2 FROM STATIC TO DYNAMIC WEB SITE ...12
1.3 WEB APPLICATION...13
1.4 AJAX-ENABLED WEB APPLICATION ...14
1.5 RIA (RICH INTERNET APPLICATION) ..14
1.6 WEB APPLICATION AND SESSION STATE ...16
1.7 SESSION STATE MODELS ...17
Bibliography ...20

CHAPTER 2...21
THE WEB BROWSERS..21

2.1 INTRODUCTION..21
2.2 A REFERENCE ARCHITECTURE FOR WEB BROWSERS..22
2.3 THE MOZILLA FIREFOX ARCHITECTURE...25
2.4 MICROSOFT INTERNET EXPLORER ARCHITECTURE..29
2.4 CHROMIUM BROWSER...31
2.5 HTTP request and response processing..36
2.5 HTTP request transmitting...36
2.6 HTTP response receiving...40
Bibliography ...45

CHAPTER 3...46
THE WEB SERVERS..46

3.1 THE GENERAL SOFTWARE ARCHITECTURE ..46
3.2 WEB SERVER REFERENCE ARCHITECTURE...47
3.3 APACHE SERVER ..53
3.4 THE MICROSOFT WEB SERVER (IIS 7.0)..57
3.5 WEB SERVER: DELIVERY OF STATIC CONTENT...61

Static content pages...61
As-is pages ...62

3.6 WEB SERVER: DYNAMIC CONTENT: CGI..63
CGI programming...65

3.7 Fast CGI ...67
3.8 SSI (Server Side Includes)..69
3.9 PHP ..72
3.10 Java Servlet API ..77
3.11 JAVA SERVER PAGES..83
3.12 JAVA STANDARD TAG LIBRARY (JSTL)..88
3.13 JAVASERVER FACES (JSF)..89
3.14 ISAPI ..93
3.15 ACTIVE SERVER PAGES..96
3.16 .ASP NET ..103
3.17 ASP.NET MVC ..109

Web Applications: technologies and models

- 4 -

3.18 ASP.NET MVC AND REST..113
Bibliography ...115

CHAPTER 4...117
AJAX AND REST ...117

4.1 INTRODUCTION..117
4.2 AJAX WITH HTML HIDDEN FRAME...118
4.3 AJAX WITH HTML INTERNAL FRAME..121
4.4 AJAX INTERACTION MODEL..123
4.5 EASY AJAX INTERACTIVITY WITH jQuery ..133
4.6 Modern Web Application: REST ..135
4.7 REST: ARCHITECTURAL ELEMENTS ...136
4.8 HTTP AND REST..138
4.9 AJAX AND REST...141
Bibliography ...143

CHAPTER 5...144
THE MECHANISMS FOR THE SESSION CONTROL ...144

5.1 INTRODUCTION..144
5.2 CLIENT-SIDE STATE MECHANISMS...145

Cookies..145
Hidden field ...150
ViewState ..152
Query Strings...153

5.3 SERVER-SIDE STATE MECHANISMS..154
Application Object ...154
Session Object ...155
File/Database ...157

Bibliography ...158
CHAPTER 6...159

WEB APPLICATION STATE MANAGEMENT...159
6.1 INTRODUCTION..159
6.2 SCHEMA OF A SESSION MANAGEMENT ...161
6.3 SESSION TOKEN..164
6.4 WHERE TO STORE THE SESSION TOKEN..168
Bibliography ...169

CHAPTER 7...170
SHOPPING CART WEB APPLICATION..170

7.1 INTRODUCTION..170
7.2 SHOPPING CART...172
7.3 SHOPPING CART WITH ROBUST SESSION..179
Bibliography ...183

CHAPTER 8...184
CONCLUSIONS ...184

Bibliography ...198

Web Applications: technologies and models

- 5 -

ABOUT THE AUTHOR

Andrea Nicchi , graduated in Computer Science from the
University of P isa, Ita ly. He got the Advanced Computer
Security Certif icate f rom the University of Stanford CA in
2012. He was Executive Director of Software Analysis and
Development at Silex Ital ia sr l.

He has been working as software architect since 1990 for
many private and public companies, both on conventional
application and web application, conceiving and designing
many software solutions.
He was Lecturer at the Diplomatic Institute "Mario Toscano"
in Rome on Net Structure and Telecommunication Systems,
Characterist ics and component of Telecommunication
Systems Internetworking Protocol, Methodology and
Technology on project and development of software and data
base, Object Oriented Programming (C, C++, Java), Web
Technology, Systems for Software and Data protection,
Systems for Communication Protection: the infrastructure o f
private and public key, the electronic firm and the t ime
stamp.

Web Applications: technologies and models

- 6 -

ACKNOWLEDGEMENTS

First of all I want to thank my wife Caterina for her endless patience and
strong support. She pushed me to improve my work and to end it.
I also want to thank Prof. Antonio Cisternino who gave me the possibility
to develop all the issues faced in this book that are the fruit of his brilliant
ideas.

Web Applications: technologies and models

- 7 -

ACRONYMS

The following acronyms are used frequently in this document with these
meanings:

Acronyms Description

AJAX AJAX stands for either Asynchronous Javascript
And XML or Asynchronous Javascript And
XMLHttpRequest

ASP Active Server Page

CGI Common gateway Interface

CSRF/XSRF Cross-Site Request Forgery

CSS/XSS Cross-Site Scripting

DTD Document Type Definition

HTTP Hypertext Transfer Protocol

MIME Multipurpose Internet Mail Extensions

PHP PHP Hypertext Preprocessor” (though it originally
stood for “Personal Home Page”)

RDF Resource Description Framework is a W3C
standard for representing meta-information.

REST REpresentational State Transfer

RIA Rich Internet Application

SGML Standard Generalized Markup Language

SVG Scalable Vector Graphics, it is an XML language for
sophisticated 2-dimensional graphics.

Web Applications: technologies and models

- 8 -

URL Uniform Resource Locator

XHTML eXtensible HyperText Markup language

XUL It is a Mozilla’s XML-based user interface
language.

Web Applications: technologies and models

- 9 -

To my mother Irma.

Web Applications: technologies and models

- 10 -

PREFACE

The leit-motiv of this book is to investigate about state management of
a software application using HTTP and Internet as communication
system also known as web application.

The web application has been analyzed trying to abstract from any
specific system both commercial and open source, just aiming to give
the concepts behind this type of software.

The reading of this book requires a minimum knowledge of
programming and the Internet technologies.

The book is useful to web developer in order to have the opportunity
to reflect of all aspects of the state of a web application even related to
several technologies both client-side and server-side.
Also the web security consultant can catch useful benefits by reading
this book which gives him a schema of all actors involved in a web
application and how they interact.

And in general who wants to begin to develop web application and in
general all ICT professionals involved in web technologies can get
useful information from reading this book.

Web Applications: technologies and models

- 11 -

CHAPTER 1

WEB APPLICATION OVERVIEW

1.1 INTRODUCTION

Software application evolved from character mode terminal
applications to desktop applications, where the application logic and
data were on the same workstation. Then, with the diffusion of LAN
we had the advent of client/server applications that are network
enabled desktop applications and now, with world wide diffusion of
Internet, we have the web applications.
As a consequence, the client/server applications gave an impulse to the
distributed computing in which a distributed program uses a
computer network to achieve a common goal. While the client/server
applications connect to the server over a network using full-duplex
network connections, with which they have access to server data
almost in real-time mode, depending on the network latency, the web
applications connect to the server using HTTP protocol by a stateless
request and response virtual circuit. With this half-duplex
connectivity, web applications take a step back in terms of
interactivity. This gap has been covered using numerous innovations
from Dynamic HTML to AJAX and now with the HTML 5 WebSockets.
Our everyday life would not be the same without the “services”
provided by the Word Wide Web1, often abbreviated as WWW.
Businesses use the potential of the web and employ it for e-commerce,
providing an on-line medium for buying and selling goods
interactively. With the new trend arisen in the on-line world, often
referred to as Web 2.0, the on-line contents are updated using

1 The World Wide Web, abbreviated as WWW and commonly known as The Web, is a system
of interlinked hypertext documents contained on the Internet. The Internet is a global system
of interconnected computer networks that use the standard Internet Protocol Suite
(TCP/IP).

Web Applications: technologies and models

- 12 -

incorporated applications that support user-generated contents, on-
line communities and collaborative mechanisms. In these new
generation applications, information flow directly on the web by the
surfers. Site visitors add information of their own, ranging from
reviews and ratings for movies, music, and book to personal journals.
These journals go by the name of blogs (short for “web logs”) and the
whole blogging movement has resurrected the idea of the personal
web page.
The evolution of web application is always a work in progress. In fact
after the Web 2.0 and AJAX, there is already something else such as
HTML 5 and the Semantic Web. For this reason it is important to
understand the underlying technology, the architecture and the model
of web applications. Otherwise it would be difficult to follow the
continuous evolution of the web world.

1.2 FROM STATIC TO DYNAMIC WEB SITE

The early web sites were only sets of web pages branching
hierarchically from a home page and connected through hypertext
links. These web pages:

 maintain thematic consistency of content;
 have a common look and feel. This means that they utilize a

common style such as page layout, graphic design, and
typographical elements;

 have well-organized interconnections in a manner to facilitate site
navigation.

Moreover these web pages and all related resources are delivered to
the users as they were filed on the web server. For this reason these
web sites are defined static.

With the introduction of CGI technology, web pages are dynamically
generated by the web server using a CGI script. This means the advent
of dynamic web. In the dynamic web site, the web server have more
work to do because information services are generated dynamically

Web Applications: technologies and models

- 13 -

often querying a relational database. This evolution step marks the
birth of the web application.

1.3 WEB APPLICATION

A web application is defined as an application program that runs on the
Internet or corporate intranets and extranets. Practically the user of a
web application uses a Web browser on a client computer to run a
program residing on the server.
We can identify three types of web applications: static, simple
interactive and complex web-based.
Static Web applications do not interact or exchange information with
their viewers. Their purpose is to share and distribute information to
the public.
Simple interactive web applications use response forms to collect
feedback or customer evaluation on their products or services.
Complex web applications handle sophisticated business transactions
online, such as online banking, stock trading, and interactive database
queries. These are the cornerstone technology for e-commerce.

The most common structure of a web application is composed by three
tiers as shown in figure 1.1.

Figure 1.1 – General web application architecture.

These three tiers are called presentation, application and storage, in this
order:

 a web browser is the first tier (presentation),

Web Applications: technologies and models

- 14 -

 an engine to generate dynamic content technology is the middle
tier (application logic),

 and a database is the third tier (storage).

In this architecture the web browser sends requests to the middle tier
which generates a response interacting with the database.

1.4 AJAX-ENABLED WEB APPLICATION

AJAX (an acronym that stands for Asynchronous JavaScript and
XmlHttpRequest) represents a new paradigm for conceiving and
developing web applications. With AJAX, web applications can
retrieve data from the server asynchronously in the background
without interfering with the display and behavior of the existing page.
These data are usually retrieved using the XMLHttpRequest object.
Despite the name AJAX, the use of XML is not actually required, nor
requests have to be asynchronous.
However the use of AJAX techniques has led to an increase in
interactive or dynamic interfaces on web pages. This paradigm will be
explained in details in the chapter 6.

1.5 RIA (RICH INTERNET APPLICATION)

The Rich Internet Applications reflect the gradual but inevitable
transition of Web applications from the simple thin-client model of a
traditional web browser to a richer model that behaves more like a
desktop in a client/server model. The Web was originally intended to
help researchers to share documents as static pages of linked text
formatted in HTML. From there, web pages quickly evolved to include
complex structures of text and graphics and to integrate plug-in
programs to play audio and video files or to stream multimedia
content. Recently, web applications evolve to a new model known as
Rich Internet Application (RIA), which is a cross between Web
applications and traditional desktop applications, transferring some of

Web Applications: technologies and models

- 15 -

the processing to the client and keeping (some of) the processing on
the web server.

RIAs are web-based applications which the following characteristics:

 function almost as traditional desktop applications;

 typically are delivered via the Internet to the browser;

 may require additional software in the browser (such as
ActiveX, Java Applets, Flash, etc...), but they do not require any
software installation.

RIAs introduce an intermediate layer of logic - a client-side engine -
between the user and the web server. Downloaded at the start of the
session, this client-side engine handles display, changes and
communicates with the server. So in the RIA world, you really have
two layers of MVC2. There is an MVC on the client and an MVC on the
web server as well.
The MVC ON THE CLIENT manages the interaction between the user
and the interface, handles all requests to the server for data, and
controls how the data is presented in the view.
The MVC ON THE SERVER handles requests from the client and
delegates actions on the server. Differently from the client, here there
is no user interface. Instead of a user interface, the view would be the
format of the data that is being returned to the client application.

2THE SOFTWARE ARCHITECTURE OF A RIA: Model-View-Controller (MVC) is a software
architectural pattern where an application is broken into separate layers:

 MODEL: is the domain-specific representation of the data on which the application operates.
 VIEW: renders the model into a form suitable for interaction, typically a user interface

element. Multiple views can exist for a single model for different purposes.
 CONTROLLER: processes and responds to events (typically user actions) and may indirectly

invoke changes on the model.

Web Applications: technologies and models

- 16 -

1.6 WEB APPLICATION AND SESSION STATE

We cannot speak of a web application without considering the session
state. Before diving into the various technologies behind a web
application, it is necessary to explain what a session is. The
mechanisms used to implement and manage the session control will be
explained in the chapter 5.

The word “session” is used in at several levels and places so in order
to avoid confusion we say what a web application session is not and
then we define what it is.

A web application session is not a TCP session, which is a TCP virtual
circuit that establishes a point-to-point communication between two
hosts on the network using the TCP connection-oriented protocol.

A web application session is not a HTTP session which is a single
request-response exchange. HTTP protocol handles each request to the
HTTP server by:

1) opening a connection with the web server over a TCP session;
2) downloading the web document;
3) dropping the connection.

in order to decrease the transfer time in the last version 1.1 of HTTP
protocol, an HTTP session has changed in:

 opening a connection on a TCP virtual circuit that may be kept
open instead of closed;

 requesting from the same browser may reuse this connection
instead of starting another one;

 closing the connection after a short period of inactivity e.g. 30
seconds.

Web Applications: technologies and models

- 17 -

A web application session is not a Browser session which lasts for as
long as the browser program is running, while HTTP session normally
“time out” after a period of inactivity according to the configurations
on the web server.

A web application session is a sequence of HTTP sessions which are connected
together using some piece of information (token) and treated as a single
interaction. This sequence is associated to one user and it is made from one
browser to one or more web sites.

Moreover when a web application session ends it leaves the state of
the web application correctly consistent with its specifications.

1.7 SESSION STATE MODELS

Software applications use and maintain the state to drive the
interactions with the user. We mean for “state” all the information that
is necessary to permit to a user to interact consistently with a software
application.

A distributed application is software that executes on two or more
computers in a network. It is made up of two parts the 'front-end' and
the ‘back-end’. The first one runs on one computer while the second one
runs on one or more suitably equipped server computers.

A web application is a distributed application which is expected to
maintain the state. A typical web application is the shopping cart,
where the server is expected to keep a list of items in the cart, and to
present this list on demand.

According the aforementioned scenario we now consider various
possible models of storing the state in a web application considered as
distributed client-server application. This topic will be better covered
throughout this book starting from the chapter 5.

Web Applications: technologies and models

- 18 -

Stateless Server
In the “stateless server model” server doesn’t maintain any state
information of each active client. The amount of exchanged data is
high and as a consequence the response time is long because each
client keeps all the state.

Figure 1.2 – Session Management: Stateless server

Distributed State
In the “distributed state model”, the client of a web application generally
uses the minimum data (a token like a Session ID) to identify the
session.

Web Applications: technologies and models

- 19 -

Figure 1.3 – Web Application Session Management

These models are only an idea of the state management of a web
application before diving into more analytic aspects related to its
operation on the Internet infrastructure.

Web Applications: technologies and models

- 20 -

Bibliography

[1.01] Leon Shklar, Rich Rosen, Web Application Architecture: Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[1.02] Vito Roberto, Marco Frails, Alessio Gugliotta, Paolo Omero,
Introduzione alle Tecnologie Web, McGraw-Hill, 2005;

[1.03] Wikipedia, World Wide Web,
http://en.wikipedia.org/wiki/World_Wide_Web;

[1.04] Wikipedia, Web Application,
http://en.wikipedia.org/wiki/Web_application;

http://en.wikipedia.org/wiki/World_Wide_Web;
http://en.wikipedia.org/wiki/Web_application

Web Applications: technologies and models

- 21 -

CHAPTER 2

THE WEB BROWSERS

2.1 INTRODUCTION

A web browser is a program that retrieves documents from remote
servers and displays them on the screen. It allows that particular
resources could be requested explicitly by URI, or implicitly by
following embedded hyperlinks.
The visual appearance of a web page encoded using HTML language
is improved using other technologies.
The first one is the Cascading Style Sheets (CSS) that allow adding
layout and style information to the web pages without complicating
the original structural mark-up language.
The second one is JavaScript (now standardized as ECMAScript
scripting language3), which is a host environment for performing
client-side computations. It is embedded within HTML documents
and the corresponding displayed page is the result of evaluating the
JavaScript code and of applying it to the static HTML constructs.
The last one is the using of plugins4, small extensions that are loaded by
the browser and used to display some types of content that the web
browser cannot display directly, such as Macromedia Flash animations
and Java Applets.
In addition to retrieving and displaying documents, web browsers
keep track of recently visited web pages and provide a mechanism for
“bookmarking” pages of interest.

3 ECMA International is an industry association founded in 1961 and dedicated to the
standardization of Information and Communication Technology (ICT) and Consumer
Electronics (CE).
4 A plug-in (also called plugin, addin, add-in, addon, add-on, snap-in, snapin) is a small software
computer program that extends the capabilities of a larger program. Plugins are commonly
used in web browsers to enable them to play sounds, video clips, or automatically
decompressing files.

Web Applications: technologies and models

- 22 -

2.2 A REFERENCE ARCHITECTURE FOR WEB BROWSERS

The web browser is perhaps the most widely used software
application running on diverse types of hardware, from cell phones
and tablet PCs to desktop computer. For this reason, reference
architecture is useful to understand how a web browser operates and
what services it supplies. A schema of the reference browser
architecture is shown in figure 2.1.

Figure 2.1 – Web browser reference architecture.

The reference schema is made up of eight major subsystems plus the
dependencies between them:

1. The User Interface subsystem is the layer between the user and
the Browser Engine. It provides features such as toolbars, visual
page-load progress, smart download handling, preferences and
printing.

2. The Browser Engine subsystem is a component that provides a

high-level interface to the Rendering Engine. It loads a given URI
and supports primitive browsing actions such as forward, back,
and reloading. It provides hooks for viewing various aspects for

Web Applications: technologies and models

- 23 -

browsing session such as current page load progress and
JavaScript alerts. It also allows querying and manipulation of
Rendering Engine settings.

3. The Rendering Engine subsystem produces a visual presentation

for a given URI. It is capable of displaying HTML and Extensible
Markup Language (XML) documents, optionally styled with
CSS, as well as embedded content such as images. It calculates
the exact page layout and may use “reflow” algorithms to
incrementally adjust the position of elements on the page. This
subsystem also includes the HTML parser. As an example the
most popular Rendering Engines are Trident for Microsoft
Internet Explorer, Gecko for Firefox, WebKit for Safari and Presto
for Opera.

4. The Networking subsystem implements file transfer protocols

such as HTTP and FTP. It translates between different character
sets, and resolves MIME5 media types for files (see figure 2.2). It
may implement a cache of recently retrieved resources.

Figure 2.2 - MIME TABLE role

5 MIME was originally intended for use with e-mail attachments, in fact MIME stands for
Multimedia Internet Mail Extensions. Unix systems made use of a .mailcap file, which was a
table associating MIME types with application programs. Early browsers made use of this
capability, now substituted by their own MIME configuration tables.

Web Applications: technologies and models

- 24 -

5. The JavaScript Interpreter evaluates JavaScript code which may
be embedded in web pages. JavaScript is an object-oriented
scripting language developed by Brendan Eich for Netscape in
1995. Certain JavaScript functionalities, such as the opening of
pop-up windows, may be disabled by the Browser Engine or
Rendering Engine for security purposes. In the following table we
ca see examples of JavaScript Interpreter.

Javascript Interpreter

Browser JavaScript Engine
Mozilla FireFox SpiderMonkey used by all

browser derived from Netscape.
From Mozilla FireFox 4. JägerMonkey, IonMonkey

Apple Safari

V8
SquirrelFish/Nitro

Google Chrome V8
Internet Explorer 9 Chakra

6. The XML Parser subsystem parses XML documents into a
Document Object Model (DOM) tree.

7. The Display Backend subsystem provides drawing and

windowing primitives, a set of user interface widgets, and a set
of fonts. It may be tied closely with the operating system.

8. The Data Persistence subsystem stores various data associated

with the browsing session on disk. This may be high-level data
such as bookmarks or toolbars settings, or it may be low-level
data such as cookies, security certificates, or caches.

Web Applications: technologies and models

- 25 -

2.3 THE MOZILLA FIREFOX ARCHITECTURE

Firefox has a rich web browsing features which include Tabbed
Browsing, Spell Checking, Search Suggestions, Session Restore, Web
Feeds (RSS), Live Titles Integrated Search, Live Bookmarks, Pop-up
Blocker, Streamlined Interface, and Accessibility. It can be also
customized by extensions, themes, and advanced preferences.
The Mozilla FireFox architecture, related to the previous exposed
reference architecture, is shown in the figure 2.3.

Figure 2.3 – Architecture of Mozilla Browser

1. The User Interface subsystem in the Mozilla Browser is split over

two subsystems: User Interface and Mozilla’s Cross-Platform
Front End (XPFE). The last one is a development environment
based on XUL to develop Mozilla applications like Firefox and
Thunderbird. XUL stands for XML User Interface Language and is
supported by Gecko, the core browser/rendering engine of
Firefox. In fact most components in Firefox’s UI are created by
using XUL and HTML 4.0 and are decorated by CSS1 and CSS2.

Web Applications: technologies and models

- 26 -

2. The Browser Engine subsystem is integrated into the most
important and larger component named Gecko. It implements
the high-level primitive browsing actions such as forward, back,
and reloading interface using the XUL language.

3. The Rendering Engine subsystem in Mozilla Firefox is larger and

more complex than that of other browsers. One reason is for the
ability to parse and render malformed and broken HTML.
Another reason is that it also renders the application’s cross-
platform user interface specified by XUL. In Mozilla Firefox the
Rendering Engine is implemented by the Gecko component
together the Browser Engine.

4. The Networking subsystem is implemented by the Necko library

that provides a platform-independent API for the lower layer of
the network stack. It uses the Mozilla Network Security Services
(NSS) library for implementing secure network communication
over SSL.

5. The JavaScript Interpreter is provides by a JavaScript engine that

exposes a public API applications called for JavaScript support.
The JavaScript interpreter includes SpiderMonkey which is a C
implementation of JavaScript firstly created by Brendan Eich at
Netscape Communications Corporations for the Netscape
Navigator web browser and secondly updated to conform to
ECMA-262 Edition 3. Like XML parser, the JavaScript
interpreter is strongly tied to Gecko.

Figure 2.4 – The Mozilla Firefox JavaScript Interpreter

Web Applications: technologies and models

- 27 -

6. The XML Parser subsystem in Mozilla Firefox is implemented on

Mozilla expat parser. It is the component responsible for handling
XML documents like XHTML, MathML, SVG, RDF, and XUL.

Figure 2.5 – The Mozilla Firefox XML Parser

7. The Display Backend subsystem is implemented in Mozilla

FireFox with a set of platform-specific interfaces integrated in
the Gecko component for instructing the native OS to draw
information on the screen.

Figure 2.6 – The Mozilla Firefox Display Backend

8. The Data Persistence subsystem is implemented by a mechanism

called DOM Storage. The DOM Storage API provides a way to

Web Applications: technologies and models

- 28 -

store meaningful amounts of client-side data in a persistent and
secure manner. The persistent storage can be done at Session
level or a Global level. References to persistent storage items are
accessed by the HTML code rendered through Gecko.

Figure 2.7 – The Mozilla Firefox Data Persistence Conceptual Architecture

Web Applications: technologies and models

- 29 -

2.4 MICROSOFT INTERNET EXPLORER ARCHITECTURE
Microsoft Internet Explorer has a COM-Based architecture which
governs the interaction of all of its components and enables
component reuse and extension. Analyzing the Internet Explorer
concrete architecture using the reference architecture described in the
section 2.2, we are going to see how the reference schema is
implemented in the Microsoft Internet Explorer.

Figure 2.8 – The Microsoft Internet Explorer COM-based Architecture

1) The User Interface subsystem is implemented by the software

component IExplore.exe and Browsui.dll. IExplore.exe is a small
application at the top level which relies on the other main
components of Internet Explorer to do the work of rendering,
navigation, protocol implementation, and son on. Browsui.dll,
often referred as “chrome”, is a DLL that provides the user
interface to Internet Explorer. It includes the various interface
components such as: address bar, status bar, menus, and son on.
With Internet Explorer 7 was introduced the Browser Utility
User Interface Library ieframe.dll as an update of Web Browser
control.

Web Applications: technologies and models

- 30 -

This file replaces shdocvw, shlwapi, and browseui dlls found in
Internet Explorer 6.

2) The Browser Engine subsystem is implemented in Internet

Explorer by the ShDocVw.dll (Shell Document View) which
provides functionality such as navigation and history and is
commonly referred to as the WebBrowser control. It is an Active
Document Container (also referred to as a Document Host) that
generally hosts MSHTML a document object designed to render
HTML.

3) The Rendering Engine subsystem is provides in the Internet

Explorer by MSHTML.dll often referred by its code name
“Trident” which is an OLE Active Document that is hosted in
ShDocVw. It takes care of HTML and CSS parsing and of
rendering functionality. MSHTMl.dll may host other
components depending on the HTML document’s content, such
as scripting engine (for example, Microsoft JScript or Visual
Basic Scripting Engine, ActiveX Controls, XML data, and son on.

4) The Networking subsystem is implemented in Internet Explorer

by the two DLL URLMon.dll and WinInet.dll. URLMon.dll (short
for URL Moniker) is a COM library that wraps the WinInet
library. It provides an extension layer for pluggable protocols
beyond HTTP, HTTPS and FTP protocols supported by WinInet.
It also offers functionality for security zones, content security,
and code download and download management. WinInet.dll is a
Windows API and handles the Windows Internet Protocol and
implements the HTTP, HTTPS and FTP protocols along with
cache and cookie management.

5) The JavaScript Interpreter is realized by components hosted by

MSHTMl.dll.

6) The XML Parser subsystem is implemented by components

hosted by MSHTMl.dll.

Web Applications: technologies and models

- 31 -

2.4 CHROMIUM BROWSER

Chromium is an open-source web browser upon which Google
Chrome is built. It has a modular multi-process architecture divided
into two functional units which have different responsibilities and
different trust levels: the Rendering Engine (RE) and the Browser
Kernel (BK).

Figure 2.9 – Chromium general architecure

Rendering Engine: it is responsible for converting HTTP responses
and user input events received by the Browser Kernel into “rendered
bitmaps”. The Rendering Engine is the most complicated unit, in fact it
is composed of many lines of code, and it is made up of complex
software components which historically have been the source of
security vulnerabilities. For this reason it is run in a sandbox to
prevent the propagation of dishonest behaviour to the entire browser
and then to the operating system of the user machine. The goal of the
sandbox is in fact to prevent any rendering engine process from
interacting directly with the file system.

Web Applications: technologies and models

- 32 -

A separate instance of the Rendering Engine (RE) is used for each tab
or site on the same tab.
The tasks of the Rendering Engine are:
 HTML Parsing;
 CSS Parsing;
 Image decoding;
 JavaScript interpreter;
 Regular Expression;
 Document Object Module;
 Rendering;
 SVG;
 XML Parsing;
 XSLT.

This rendering module interprets and executes web content. The task
is done in several stages:

1) parsing web content: it parses HTML and delegates JavaScript
code found in the document to the JavaScript Interpreter;

2) building an in-memory representation of the DOM;
3) laying out the document graphically;
4) manipulating the document in response to script instructions.

To interact with the user, the local machine, or the network, the
rendering engine uses the browser kernel API.

The architecture treats the rendering engine as a black box that takes
unparsed HTML as input and produces rendered bitmaps as output
(see Figure 2.10).

Web Applications: technologies and models

- 33 -

Figure 2.10 – Chromium Rendering Engine as a Black Box

Browser Kernel: its tasks are the following ones:
 Managing multiple instances of RE;
 Implementing the Browser Kernel API;
 Managing the persistent state (Cookie Database, History

Database, Password Database, Safe Browsing Blacklist) ;
 Implementing a tab-based windowing system, including a

location bar the displays the URL of the currently active tab
(Window management, Location Bar);

 Interacting with the network (Network Stack, SSL/TLS);
 mediating between the RE and the operating system’s native

window manager;
 maintaining state information about the privileges it has granted

to each RE, which are used to implement a security policy that
defines how exactly the RE is sandboxed (Disk Cache,
Download Manager, Clipboard).

Web Applications: technologies and models

- 34 -

Plug-ins: each plug-in runs in a separate host process with the user’s
full privileges, outside both the rendering engines and the browser
kernel. They cannot be hosted inside the RE because plug-in vendors
expect there to be at most one instance of a plug-in for the entire web
browser. For example, the Flash Player plug-in can access the user’s
microphone and webcam, as well as write to the user’s file system to
update itself and store Flash cookie.

Considering the various functionalities and the multi-process
architecture of Chromium, the design of its architecture appears as
shown in Figure 2.11.

Figure 2.11 – Chromium Architecture

Web Applications: technologies and models

- 35 -

Now we are going to analyze the Chromium’s architecture according
to the previous exposed reference architecture.

1. The User Interface subsystem is implemented inside the Browser
Engine unit. When a user’s action generates an event, the
operating system delivers this event to the BK, which dispatches
it to the RE according to the currently focused user interface
element.

2. The Browser Engine subsystem is a component that provides a
high-level interface to the Rendering Engine. In Chromium this
subsystem is implemented by the Browser Engine component
inside the Browser Kernel unit.

3. The Rendering Engine subsystem in Chromium runs in a sandbox
for security reasons and it is based on Webkit6. It draws into an
off- screen bitmap which is sent to the Browser Kernel to display
the bitmap to the user by copying the bitmap to the screen.

4. The Networking subsystem is a component of the Browser
Kernel. The RE doesn’t directly access the network in fact it
retrieves URLs from the network via the BK. Before servicing a
URL request, the BK checks whether the related RE is
authorized to request the URL. For example generally the BK
prevents most REs from requesting URLs with the file scheme.

5. The JavaScript Interpreter is provides by a component inside
every Rendering Engine.

6. The XML Parser is provides by a component of Rendering
Engine.

7. The Display Backend subsystem is implemented in a component
of the Browser Kernel Unit.

8. The Data Persistence subsystem is provided by several
component of the Browser Kernel. Only the BK can interact with
the File System via the Operating System.

6 http://webkit.org/: WebKit is an open source web browser engine. WebKit originally was a branch
of the KHTML engine and now server as foundation for other major browser like Safari and Chrome.

http://webkit.org/:

Web Applications: technologies and models

- 36 -

2.5 HTTP request and response processing
After analysing the component modules of web browser architecture,
we are going over to the processing flow of HTTP requests and
responses. We will examine how browsers create and transmit HTTP
requests, receive and interpret HTTP responses, and interact with the
user.
Let’s see an overview of browser functionalities. At a high level of
abstraction the main browser functionalities are:

a) to generate and submit requests to the web server on the user’s
behalf;

b) to accept and examine responses from the HTTP servers and to
interpret them in order to produce a visual presentation for the
user;

c) to render the results in the browser window.

2.5 HTTP request transmitting
In this section we are going to analyze at a high level of abstraction the
creation and transmission of a request in a browser.

Figure 2.12 – Browser request generation flow

Web Applications: technologies and models

- 37 -

1) The process begins with the Use Interface subsystem that gets
the user action for a new hyperlink. A user action could be:
 Entering URL’s manually;
 Selecting previously visited links from the history of visited

links, from a bookmarked link, or from a dropdown list of the
address bar or another field;

 Selecting displayed hyperlink.

2) The selected hyperlink is passed on to the Request Generation
module of Browser Engine subsystem. Firstly it must resolve the link
passed which could be absolute or relative. An absolute URLs
contain all the required URL components and don’t need to be
resolved:

<protocol>://<host>/<path>

The resolution of a relative URL is dependent on its href attribute.
The process of resolution is specified by the following algorithm
formalized using a C-like pseudo-code.

URLRelativeToAbsolute (MyProtocol, MyHost, MyPath, ARelativeURL) {

 If (<BASE href=http://www.DefaultURL.com/MySite/> is in HEAD section) {

 <use the BASE href for all links on the page>;
 Return BASE http://www.DefaultURL.com/MySite/ARelativeURL

 }
 Else {
 If (ARelativeURL doesn’t begin with a slash = Location
 relative to current location) {

 return <MyProtocol>://<MyHost>/<MyPath>/ARelativeURL

 };

 If (ARelativeURL begins with a slash = Location
 relative to the host portion of current location) {

 return <MyProtocol>://<MyHost>/ARelativeURL

 };

 }

}

http://www.DefaultURL.com/MySite/
http://www.DefaultURL.com/MySite/

Web Applications: technologies and models

- 38 -

Secondly after resolving the URL, the Request Generation module
builds the request.
The first portion of the request that needs to be created is the request
line, which contains:
 a request method (e.g. GET, POST, or HEAD);
 a path to the resource which is the path portion of the

requested URL;
 and the version number of HTTP associated with the request.

In addition to the request line, the header of the request also contains:
 The Host;
 The User-Agent;
 The Referer that is the URL of the page containing the link

that the user clicked;
 The Date that specifies the time and the date when the

message is created;
 The Accept header list, the MIME types, character sets,

languages, and encoding schemes that the client can accept in
a response from the web server.

 Information of the message body: the Content-Type and the
Content-Length.

 Cookies containing name-value combinations tied to the
server URLs and founded by the browser in previous
received responses;

 Authorization information in order to provide authentication
credentials to the server.

Then we have to construct the body of the request if it is necessary.
When users follow a hyperlink, they implicitly select the GET
method which includes the encoded data in the URL as a query
string. That means the request message doesn’t include the body
part.
The process of construction of the body part of the request applies
only for methods such as POST and PUT.
We have the POST method in the request line generally when user
has entered data into form fields and clicked on a Submit button. In
this case to the Request Generation module is passed not only the

Web Applications: technologies and models

- 39 -

URL but also the data converted or better URL-encoded into
name-value pairs, which will be used to construct the body part of
the request message.

At the end the Request Generation module interacts with other
Browser modules in order to accomplish its task:

 Firstly it asks the Caching module if it has a copy of resource,

if so it checks with the server in case of a newer version of the
resource is available.

 Secondly it asks the Authorization module if the credentials
are required. In case positive if the browser has not already
stored them for the appropriate domain and path, it contacts
the User Interface subsystem to prompt user for credentials.

 Thirdly it asks the Data Persistence subsystem to determine
whether the requested URL matches domain and path
patterns for saved cookies that have not expired.

3) Once the request construction is complete, it is passed to the
Network subsystem. Before it determines the target server of the
request which is contained in the Host header of the request. Then
it contacts the Configuration module to see whether the browser
should use a proxy, which then becomes the immediate target of
the request. Finally the Network subsystem establishes a
connection if one is not available and transmits the request.

Web Applications: technologies and models

- 40 -

2.6 HTTP response receiving
In this section we are going to examine how a response is handled by a
browser.

Figure 2.13 – Response Processing flow

A HTTP response has the following format:

HTTP/version-number status-code message
Header-Name-1: value
Header-Name-2: value

[response body]

Web Applications: technologies and models

- 41 -

Every part of the HTTP response is examined during the response
processing.

1) The HTTP responses transmitted by the web server are received
by the Network subsystem which passes it to the Response
Processing module.

2) The first data analyzed by the Response Processing module is the

status code of the status line of the header of the message.

a. If the status code is 401 Not Authorized that means
that the HTTP built-in support for basic authentication
has been using and the request is of the type:

HTTP/1.1 Authenticate
Date: Fri, 30 Apr 03 2011 :25:30 GMT
Server: Apache/2.2.4
WWW-Authenticate: Basic realm=”ReservedArea”

At this point the Response processing module asks the
Authorization module for cooperation, which asks the
User Interface module in order to use the browser to
prompt the user for a user-Id and a password associated
with the realm specified in the WWW-Authenticate
header in this case the ReservedArea. After collecting
this input from the user, the browser resubmits the
original request with the Authorization header
containing the newly entered credentials. The value of this
header is a string composed of the word Basic (that
indicates the only type of authentication that is officially
supported by the HTTP protocol) and a colon-separated,
base64-encoded representations of the user name and
password.

GET /Library/ReservedArea/index.html
Date: Fri, 30 Apr 2011 03:25:50 GMT
Host: www.mywebsite.com
Authorization: Basic Encoded-UserID:Password

http://www.mywebsite.com

Web Applications: technologies and models

- 42 -

Note that the user name and the password are encoded
but not encrypted. Encryption is obtained using https
protocol.

b. If in the response header there are Set-Cookie or
Set-Cookie2, the Response processing module
cooperates with State Maintenance module which stores
the cookie information using the browser’s Data
Persistence subsystem.

Set-Cookie: name=value; domain=domain.name; path=urlPath;
[secure]

3) The other important data analyzed by the Response Processing

module is the Content-Type header, in order to determine the
MIME type of the body of the response. We are going to explain
the process of Content-Type analysing using a brief code snippet
in a C-Like pseudo-code.

Web Applications: technologies and models

- 43 -

Simplified MIME Type Analysis Algorithm

Data Structure used in the CONTENT INTERPRETATION module

MIME Type natively supported List
1) Text/html: including HTML;
2) Image/GIF: graphical image;
3) Image/Jpeg: graphical image;
4) Audio/wav: sounds;
5) Audio/mpeg: sounds;
6) Other …

Data Structure used in the CONFIGURATION module

PLUG-IN SET: Set of installed plug-ins containing couples of
the type:
 <MIME Type, related plug-ins>;

APPLICATION SET: Set of helper applications containing couples
of the type:
 <MIME Type, related helper application>;

ASSOCIATION SET: Set of operating system’s associations
containing couples of the type:
 <MIME Type, operating system’s association>;

MIME Type handling Algorithm (pseudo-code)

<GET Content-Type header of the response>;

If (Content-Type header is in MIME Type natively supported List) {
 <process response content with built-in browser component>;
}
Else
{
 If (Content-Type header is in PLUG-INS SET) {
 <process response content with the related plug-in>;
 }
 Else
 {
 If (Content-Type header is in APPLICATION SET){
 <process response content with the helper application>;
 }
 Else
 {
 <process response content with OS associated application>;
 }
 }
};

Web Applications: technologies and models

- 44 -

4) Once the content of a successful response has been decoded and
cached, the cookie information stored, and the content type
determined, the response content is passed to the Content
Interpretation module. HTML pages support embedded
references to additional resources, such as images, CSS style
sheets, and JavaScript components. The Content Interpretation
module must parse the content prior to passing it on to the User
Interface module, determining if additional requests for
embedded references are required. URL’s associated with these
requests are resolved when they are passed to the Request
Generation module. When each of the requested resources
arrives, it is passed to the User Interface module so that it may be
incorporated in the final presentation.

Web Applications: technologies and models

- 45 -

Bibliography

[2.01] Alan Grosskurth, Michael W. Godfrey, Architecture and evolution of the
modern web browser, David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, 2006;

[2.02] Iris Lai, Jared Haines Johm, Chun-Hung, Chiu Josh Fairhead, Conceptual
Architecture of Mozilla Firefox (version 2.0.0.3), SEng 422 Assignment
1 Dr. Ahmed E. Hassan, 2007;

[2.03] Microsoft Developer Network, Internet Explorer Architecture,
http://msdn.microsoft.com/en-us/library/aa741312(VS.85).aspx;

[2.04] Leon Shklar, Rich Rosen, Web Application Architecture: Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[2.05] Adam Barth (UC Berkeley), Charles Reis (University of Washington),
Collin Jacksion (Stanford University), The Security Architecture of the
Chromium Browser, 2008;

[2.06] http://www.chromium.org/: The Chromium projects include Chromium
and Chromium OS, the open-source projects behind the Google Chrome
browser and Google Chrome OS, respectively;

[2.07] Matthew Crowley, Pro Internet Explorer 8&9 Development, Apress,
2010;

[2.08] Francesco Fullone, Enrico Zimuel, Federico Gallassi, Matteo
Collina, JavaScript: best practices, Edizioni FAG Milano, 2013;

http://msdn.microsoft.com/en-us/library/aa741312(VS.85).aspx;
http://www.chromium.org/:

Web Applications: technologies and models

- 46 -

CHAPTER 3

THE WEB SERVERS

3.1 THE GENERAL SOFTWARE ARCHITECTURE
Web servers, browsers, and proxies communicate by exchanging
HTTP messages on a network structure using the request-response
virtual circuit.
Web severs enable HTTP access to a collection of documents. And
other information organized into a tree structure, much like a
computer file system.

Figure 3.1 - Request-Response Schema

Web server receives and interprets HTTP requests from a client
generally a browser. Then it examines the requests and maps the
resource identifier to a file or forwards the request to a program which
then produces the requested data. Finally, the server sends the
response back to the client.

Web Applications: technologies and models

- 47 -

The behaviour of a single-tasking HTTP Server using the Petri Net7
formalism is shown in Fig. 3.2.

Figure 3.2 – Behaviour of a single-tasking HTTP server.

3.2 WEB SERVER REFERENCE ARCHITECTURE
In this section we are going to show a reference architecture for web
server domain. It defines the fundamental components of the domain
and the relations between these components.
The reference architecture provides a common nomenclature across all
software systems in the same domain, which allows:

7 A Petri net consists of places, transitions, and directed arcs. Arcs run from a place to a
transition or vice versa, never between places or between transitions. The places from which
an arc runs to a transition are called the input places of the transition; the places to which arcs
run from a transition are called the output places of the transition. More information is at link
http://en.wikipedia.org/wiki/Petri_net.

http://en.wikipedia.org/wiki/Petri_net.

Web Applications: technologies and models

- 48 -

a) to describe uniformly the architecture of a web server and to
understand a particular web server passing before through its
conceptual architecture and then through its concrete
architecture, which may have extra features based on its design
goals. For example, not all web servers can serve Java Servlets;

b) to compare different architecture by using a common level of
abstraction.

The web server reference architecture proposed is shown in Fig. 3.3.
As you can see, it specifies the data flow and the dependencies
between the seven subsystems. These major subsystems are divided
between two layers: a server layer and a support layer.

Figure 3.3 - Web Server reference architecture.

The Server Layer contains five subsystems that encapsulate the
operating system and provides the requested resources to the browser

Web Applications: technologies and models

- 49 -

using the functionality of the local operating system. We will now
describe every subsystem of the layer.

 The Reception subsystem implements the following
functionalities:
a) It is waiting for the HTTP requests from the user agent that

arrive through the network. Moreover it contains the logic
and the data structures needed to handle multiple browser
requests simultaneously.

b) Then it parses the requests and, after building an internal
representation of the request, sends it to the next
subsystem.

c) At the end it sends back the request’s response according to
the capabilities of the browser.

 The Request Analyzer subsystem operates on the internal
request received by the Reception subsystem. This subsystem
translates the location of the resource from a network location to
a local file name. It also corrects typing user error. For example
if the user typed indAx.html, the Request Analyzer automatically
corrects it in index.html.

 The Access Control subsystem authenticates the browsers,
requesting a username and password, and authorizes their
access to the requested resources.

 The Resource Handler subsystem determines the type of
resource requested by the browser. If it is a static file that can be
sent back directly to the user or if it is a program that must be
executed to generate the response.

 The Transaction Log subsystem records all the requests and
their results.

The support layer contains two subsystems that provide services used
by the upper server layer.

 The Utility subsystem contains functions that are used by all
other subsystems.

 The Operating System Abstraction Layer (OSAL) encapsulates
the operating system specific functionality to facilitate the

Web Applications: technologies and models

- 50 -

porting of the web server to different platforms. This layer will
not exist in a server that is designed to run on only one platform.

There are two others aspects that characterize web server architecture
and go in during its activity:

 The processing model: it describes the type of process or
threading model used to support a Web Server operation;

 The pool-size behaviour: it specifies how the size of the pool or
threads varies over time in function of workload.

The main processing models are:
1) Process-based servers: the web server uses multiple
single-threaded processes each of which handles one HTTP
request at a time.

Figure 3.4 - Web Server: Process-Based model.

2) Thread-based servers: the web server consists of a single
multithread process. Each thread handles one request at a time.

Figure 3.5 - Web Server: Thread-Based model.

3) Hybrid model servers: the web server consists of multiple
multithreaded processes, with each thread of any process
handling one request at a time.

Web Applications: technologies and models

- 51 -

Figure 3.6 - Web Server: multiple multithreaded processes.

For the pool size behaviour we have two approaches:

1) Static approach: the web server creates a fixed number of
processes and threads at the start-up time. If the number of
requests exceeds the number of threads/processes, the requests
wait in the queue until a thread/process becomes free to serve it.
2) Dynamic approach: the web server increases or decreases
the pool of workers (processes and threads) in function of the
numbers of requests. These behaviour decreases the queue size
and the waiting time of each request.

Reception Subsystem: queue of requests and responses management
The Reception Subsystem maintains a queue of requests and responses
to carry out its job within the context of a single continuously open
connection. A series of requests may be transmitted on it and the
responses to these requests must be sent back in the order of request

Web Applications: technologies and models

- 52 -

arrival (FIFO). One common solution is for the server to maintain both
an input and an output queue of requests. When a request is submitted
for processing, it is removed from the input queue and inserted into
the output queue. Once the processing is complete, the request is
marked for release, but it remains on the Output Queue while at least
one of its predecessors is still there. When the response is sent back to
the browser the related request is released. Here is a code snippet
using a C-like language to show how the queue of requests and
responses are managed.

// DEFINITIONS
// UserRequest: represents the user request
// WebResponse: represents the relative web response

// DATA STRUCTURES
RequestQueueElement = (UserRequest, Marker);
ResponseQueueElement = (WebServerResponse, RelatedUserRequest);

// Requests that are not processed yet
Queue RequestQueueElement RequestInputQueue;

// Requests that are in processing or already processed
Queue RequestQueueElement RequestOutputQueue;

// Responses related to User Requests
ResponseOutputQueue; // FIFO politics

// ALGORITHM
While (true) {
 If <User Request arrived> {
 Enqueue(UserRequest, RequestInputQueue);
 };
 If <User Request can be processed> {
 UserRequestInProcessing= RemoveFrom(UseRequest,RequestInputQueue);
 Enqueue(UserRequestInProcessing, RequestOutputQueue);
 SubmitForProcessing(UserRequestInProcessing);
 };
 If <User Request has been already processed> {
 MarkforRelease(UserRequest, RequestOutputQueue);
 Enqueue(WebResponse, ResponseOutputQueue);

 };

 If <Length(ResponseOutputQueue)> 0 > {
 WebResponse= Dequeue(ResponseOutputQueue);
 RemoveFrom(WebResponse.UserRequest RequestOutputQueue);
 SendResponse(WebResponse);
 };
}

Web Applications: technologies and models

- 53 -

3.3 APACHE SERVER
In this section we are going to examine the web server Apache with a
particular reference to its 1.4 version. Apache runs as permanent
background task: a daemon (UNIX) or service (Windows). Start-up is a
slow and expensive activity, so Apache generally starts at system boot
and remains permanently up. At the beginning we analyze its
conceptual architecture. Then we go in to some details related to the
architecture of the web server Apache.

Figure 3.7 – Apache Web Server: conceptual architecture.

Web Applications: technologies and models

- 54 -

In the fig. 3.7 we can see the conceptual architecture8 of the web server
Apache in which are highlighted the subsystems of the web reference
architecture. It occurs to analyze internally the child server in order to
clearly point out the other web server reference subsystems. The figure
3.8 shows the request processing phases of a child server. Every HTTP
request is processed by a single child server.

Figure 3.8 – Apache Web Server: child server request processing phases.

8 In the web server architecture the Rectangles symbolize active components (agents) like people
(symbolized by a stick man), machines or processes, big circles and ellipses stand for passive
components like storages and small circles on a line depict channels between agents.

Web Applications: technologies and models

- 55 -

Now we examine the activity of the web server Apache at runtime
after initialization. The snapshot of the fig. 3.7 shows the architecture
and the interaction of the various components at runtime.
In the inner structure we can immediately identify three major agents:

 The TCP/IP communication service: it is part of the operating
system and manages access to TCP ports and connections. It can
receive connection requests simultaneously and wake up
processes/threads waiting for a request.

 The Master Server Process: it is known as Multi-Processing
Module (MPM). It is responsible for maintaining a pool of
worker processes and/or threads (child servers), as appropriate
to the operating system and performance requirements, in order
to guarantee that there are always idle child server ready to
process incoming requests. It uses for this task the so-called
scoreboard inside a shared memory area where each child
server has to refresh its current state.

 The Child server pool: they are responsible for handling HTTP
requests. They run the request-response loop and are waiting for a
request. They also run the sub-loop of request-response loop
called keep-alive loop to reuse HTTP/1.1 persistent connections for
subsequent requests from the same client. They handle at most
one connection at a time and they continue to handle only that
connection until the connection is terminated. In the fig. 3.9 it is
shown a state transition diagram for child server.

Figure 3.9 – Child server transition state.

In a “Idle” state a child server is waiting for a client connection,
at which point it enters the “User think” state and waits for an

Web Applications: technologies and models

- 56 -

HTTP request. The child server is “Busy” for processing the
request and sending a reply. The time between sending an
HTTP reply and the receipt of the next request is spent in the
“User think” state. This state is used for HTTP/1.1 persistent
connections.

Web Applications: technologies and models

- 57 -

3.4 THE MICROSOFT WEB SERVER (IIS 7.0)
Now we consider as an example of web server Microsoft IIS (Internet
Information Server) and we analyze its architecture using the reference
model presented in the section 3.2. IIS 7.0 provides a new request-
processing architecture and the possibility to customize the web server
engine by adding or removing modules.
In the figures 3.10 e 3.11 we can see the mapping of the reference
architecture of a web server over the concrete architecture of Microsoft
IIS 7.0.

Figure 3.10 – IIS Architecture and HTTP Request processing flow

Web Applications: technologies and models

- 58 -

Figure 3.11 – Worker Process internal architecture

Now we go through the main internal components of the IIS concrete
architecture, in order to better understand how IIS works.

HTTP Listener
The HTTP listener is part of the networking subsystem of windows
operating system and it is implemented as a kernel-mode device
driver called Hypertext Transfer Protocol Stack (HTTP.sys). This driver
replaced the Windows Sockets API (Winsock), a user-mode
component. It listens for HTTP requests from the network, passes the
requests onto IIS for processing and returns the processed responses to
the client browsers.

WWW Publishing Service
WWW Publishing Service is a service that runs in the Svchost.exe
process. It is the listener adapter for the HTTP listener, HTTP.sys and it
is responsible for configuring HTTP.sys, updating HTTP.sys when

Web Applications: technologies and models

- 59 -

configuration changes, and for notifying Windows Process Activation
Service (WAS) when a request enters the request queue.

Windows Process Activation Service (WAS)
WAS manages application pool configuration and worker processes.
On start-up, WAS reads certain information from the
ApplicationHost.config file and passes that information to listener
adapters on the server which establish communication between WAS
and protocol listeners HTTP.sys.
When a protocol listener picks up a client request, WAS determines if a
worker process is running or not. If an application pool already has a
worker process servicing the requests, the listener adapter passes the
requests to the worker process for processing. If there is no worker
process in the application pool, WAS will start a worker process so
that the listener adapter can pass the request to it for processing.

Application Pool
Application pool is the container of worker processes. If it contains
multiple worker processes, it is called “Web Garden”. Application pools
are used to separate sets of IIS worker processes that share the same
configuration. The worker process serves as the process boundary that
separates each application pool so that this makes sure that a
particular web application doesn't impact other web application as
they are configured into different application pools.

Figure 3.13 – IIS Application Pool

Web Applications: technologies and models

- 60 -

Worker Process
Worker Process (w3wp.exe) is responsible to manage all the request
and response that are coming from clients.

HTTP Request processing flow in IIS 7.0
The following list describes the request-processing flow that is shown
in Fig. 3.10:

1) When a client browser initiates an HTTP request for a resource
on the Web server, HTTP.sys intercepts the request.

2) HTTP.sys contacts WAS (Windows Process Activation Service) to
obtain information from the configuration store.

3) WAS requests configuration information in the configuration
store from applicationHost.config.

4) WWW Service receives configuration information, such as
application pool and site configuration.

5) WWW Service uses the configuration information to configure
HTTP.sys.

6) WAS starts a worker process for the application pool to which
the request was made.

7) The worker process processes the request and returns a response
to HTTP.sys.

8) The client receives a response.

Web Applications: technologies and models

- 61 -

3.5 WEB SERVER: DELIVERY OF STATIC CONTENT
A static stored page is created using only HTML, XML, plain text, etc..
They can contain other elements suitable for the page, such as images
and animation, but they do not make use of any information stored in
a database or produced by the output of a web server program.

Static content pages fall into two categories:

 Static content page: static files containing HTML pages, XML

pages, plain text, images, etc., for which HTTP responses must
be constructed (headers plus contents);

 As-is page: static file containing complete HTTP responses
including headers.

Static content pages
As an example we consider the following request from a web browser:

http://www.aWebSite.com/info/column01.html

When the web server receives this request the Reception subsystem
passes it to the Request Analysis subsystem then to the Resource
Handler subsystem. This maps the URL to the file location relative to
the server document root.
The path portion of this URL, /info/column01.html, is mapped to
the specific filename within the local file system of the server. For
example, if the web server is configured with the document root equal
to c:\inetpub\wwwroot, the portion of URL is mapped to

c:\inetpub\wwwroot\info\column01.html

in the server file system. Since no processing is necessary, the retrieved
file is passed to the Reception subsystem. It constructs the response
and transmits it to the user agent which made the related request. Here
is an example.

http://
http://www.aWebSite.com/info/column01.html

Web Applications: technologies and models

- 62 -

HTTP/1.1 200 OK
Date: Tue, 25 May 2011 21:19:11 GMT
Last-Modified: Mon, 21 May 2011 17:11:04
Content-type: text/html
Content-length: 254
Server: Microsoft-IIS/6.0

<HTML>
<HEAD>
 <TITLE>
 Algorithms and complexity
 </TITLE>
</HEAD>
<BODY>
<H2>ALGORITHM DESIGN TECHNIQUES</H2>

 Exhaustive Search

 Branch-And-Bound

</BODY>
</HTML>

It is important that the server sets the Content-type header to the
appropriate MIME type so that the browser can render the content
properly.
The server may also set the Content-length header. This is optional
and may be missing for dynamic content because it is difficult to
determine the size of the response before its generation is complete.
However it allows the browser to report correctly on the content
download progress.
The Last-modified header is used by the browser logic in forming
requests and reusing locally cached content. Even though last-
modified is not a required header, the server is expected to make its
best effort to determine the most recent modification date of requested
content and use it to set the header.
The response, received by the Reception subsystem, is placed in the
output queue for persistent connections and then at the appropriate
time it is transmitted to the browser which requested it.

As-is pages
The idea is that pages contain a complete response and the server is
supposed to send them back “as is”, without adding status codes or

Web Applications: technologies and models

- 63 -

headers. In practice, the Resource Handler subsystem and the
Reception subsystem don’t do anything.
It is common to configure the server to map the .asis file extension
to as-is processing. The most common use for this feature is to send the
Location HTTP header, which will redirect the client to some other
URL.

Here's an example of .asis file:

Status: 302 Relocate status
Location: http://www.new.place.com/new/
Content-type: text/html

<HTML>
<HEAD>
<TITLE>New Home Page</TITLE>
</HEAD>
<BODY>
<H1>We've Moved</h1>
New Page.
</BODY>
</HTML>

Notes:

 You must include all relevant HTTP header lines. In particular,
you need the Status: 302 and the Location:
http://new.url/... headers.

 The Content-type: header and the other HTML are not really
necessary. They are useful only for browsers that don't support
the Location directive. If you do want to include this, be sure to
leave a blank line between the HTTP header and the HTML.

3.6 WEB SERVER: DYNAMIC CONTENT: CGI
The original mechanisms for serving up dynamic content are CGI and
SSI. Therefore it is necessary to understand them before diving into the
today’s more sophisticated and more efficient mechanisms for serving
up dynamic content.

http://www.new.place.com/new/
http://www.new.place.com/new/
http://new.url/...

Web Applications: technologies and models

- 64 -

CGI (Common Gateway Interface) is a simple interface between web
server and an external program that allows programs to communicate
with web server. The general scenario of CGI is based on a client
request for a resource represented by a CGI script.
After receiving this request, and before starting the script, the server
sets a number of system environment variables.
The heart of the CGI specification is the designation of a fixed set of
“environment variables” that all CGI applications know about and can
access. The server is supposed to use request information to populate
the variables. Information used to populate these variables comes from
the request line, connection parameters, URL, and other resources.
These environment variables are set when the server executes the
gateway program and are inherited by CGI script process.
Afterwards, the server starts the scripts and passes possible user-
specified parameters to the process through the standard-input. The
CGI processes the input and generates output to be sent to the client.
The script writes its output to the standard output, and the server
sends it back as a response to the client. Therefore, server either
interprets the output of the script to generate a valid response header,
or simply forwards the output of the script as response. However, the
script output must be already in a web understandable format.

One of the most frequent applications of CGI is the processing of data
form. Thus, the server side can store/retrieve data from databases and
allows interactivity with the user. For such requests with GET the user
parameter are added to the URL (limited length) and with POST in the
body of the request message (unlimited length).
When we use the GET method to transmit information contained on a
form, we can send only ASCII characters. On the other hand if we use
the POST method with enctype=”multipart/form-data” instead of
application/x-www-form-urlencoded we can include the Universal
Character Set ISO 106469.

9 The Universal Character Set (UCS), defined by the International Standard ISO/IEC 10646, Information technology
— Universal multiple-octet coded character set (UCS), is a standard set of characters upon which many character
encodings are based. The UCS contains nearly one hundred thousand abstract characters, each identified by an
unambiguous name and an integer number called its code point. This character encoding method is intended to be
used in MIME messages as follows: Content-Type: text/plain; charset=iso-10646.

Web Applications: technologies and models

- 65 -

CGI has many benefits:
 Language independence: CGI applications can be written in nearly

any language;
 Process isolation: since applications run in separate processes,

buggy applications cannot crash the web server or access the
private internal state of the web server;

 Open standard: some form of CGI has been implemented on
every web server;

 Architecture independence: CGI is not tied to any particular server
architecture (single threaded process, multi-threaded process,
etc.).

The CGI disadvantages are:
 CGI scripts terminate after execution: after sending the response to

the server, the script terminates. So that if a script is called
frequently, this behaviour results in many process creation and
termination. This generates a significant web server processing
overhead.

 CGI defines a local interface: through the use of environment
variables and standard input/output CGI defines a local
interface which can only be used between processes running on
the same machine.

CGI programming
Common Gateway Interface refers just to convention on how the
invocation and the parameter passing takes place in detail.
About invocation for Perl script, the server would invoke a Perl
interpreter and make it execute the script in an interpreted manner.
For an executable program, which has typically been produced by a
compiler and a loader from a source program in a language like C, it
would just start as a separate process.
To use a C program as a CGI script, you need to compile and load
your C program and uploading it on the web server.

Web Applications: technologies and models

- 66 -

For processing simple forms that uses METHOD=”GET”, CGI
specifications say that the data is passed to the script in the
environment variable called QUERY_STRING.
In the C language you should use the library function getenv (defined
in the standard library stdlib) to access the value of the string.
Here is a simple example10 that shows the use of the CGI using the
GET method.

To show the example we start from the HTML form.

<form action="http://.../cgi-bin/.../mult.cgi">
<div><label>Multiplicand 1: <input name="m" size="5"></label></div>
<div><label>Multiplicand 2: <input name="n" size="5"></label></div>
<div>

<input type="submit" value="Multiply!">
</div>
</form>

The result on the browser is:

The source program in C of CGI script is the following:

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

char *data;
long m,n;

printf("%s%c%c\n","Content-Type:text/html;charset=iso-8859-1",13,10);

printf("<TITLE>Multiplication results</TITLE>\n");
printf("<H3>Multiplication results</H3>\n");

data = getenv("QUERY_STRING");

if(data == NULL)
 printf("<P>Error! Error in passing data from form to script.");
else
 if(sscanf(data,"m=%ld&n=%ld",&m,&n)!=2)
 printf("<P>Error! Invalid data. Data must be numeric.");
 else

10 This example has been taken from the web site: http://www.cs.tut.fi/~jkorpela/forms/cgic.html.

http://.../cgi-bin/.../
http://www.cs.tut.fi/~jkorpela/forms/cgic.html.

Web Applications: technologies and models

- 67 -

 printf("<P>The product of %ld and %ld is %ld.",m,n,m*n);

return 0;

}

The result on the browser will be:

For forms that use METHOD=”POST”, CGI specifications say that the
data is passed to the script or program in the standard input (sdtin)
and the length in bytes of the data is passed in an environment
variable called CONTET_LENGTH.

3.7 Fast CGI

The CGI programmatic approach gives mechanisms to the
programmers to access to the request context information including
headers and URL parameters. The main drawback of this approach
has been the overhead of process creation and initialization for each
request. Moreover many large and interpreted applications can be
slow to start.

Figure 3.14 – Web Server CGI relationship

Web Applications: technologies and models

- 68 -

To face to this problem was developed in 1996 a new model called
FastCGI by Open Market as a variation of the already known CGI
protocol. Although FastCGI provides the same services as the original
CGI protocol, the underlying architecture is different.

Figure 3.15 – Web Server FastCGI relationship

Each FastCGI application runs in its own process and can be accessed
by the server in one of two ways: through a direct pipe if the Web server
and FastCGI processes are running on the same machine, or through a
TCP/IP connection if the FastCGI is running on a different machine.
To take advantage of this new model, developers must structure their
code so that it employs a re-entrant loop that executes for each request
passed by the program. The FastCGI application continues to execute
for as long as the web server is running. It combines the safety of a
separate process with server software independence, without the
overhead of starting a separate process on every request. With this
architecture a failure of an individual FastCGI application should not
bring down the web server. These characteristics show that the
FastCGI model has many things in common with Java Servlets that
will be discussed in the section 3.10.

The advantages in using FastCGI approach are:

 Performance. FastCGI processes are persistent and isolated and
reused to handle multiple HTTP requests.

 Language and Operating System independence: FastCGI
applications can be written in any language.

 Support for distributed computing. FastCGI provides the
ability to run applications remotely, which is useful for

Web Applications: technologies and models

- 69 -

distributing load and managing external web sites. This is not
possible with the standard CGI.

 Open Standard: FastCGI is non-proprietary, anyone can use it,
and anyone can improve it.

The main drawback of FastCGI is:

 Program complexity: requires more disciplined programming
paradigm than the standard CGI.

3.8 SSI (Server Side Includes)
It provides mechanisms to place “directives/macros” in HTML pages which
are evaluated on the server when the pages are being served. SSI is a great
way to add small pieces of information into a HTML as the results of the
execution of CGI scripts. SSI is not a good solution if most of the HTML page
is generated by the web server when it is requested.

SSI macros must have the following format:

<!--#command tag1="value1" tag2="value2" -->

The syntax is designed to place SSI commands within HTML
comments ensuring that unprocessed commands are ignored when the
page is sent to the browser.

Each command takes different arguments, most only accept one tag at
a time. Here is a list of the commands and their associated tags:

 Config: the config directive controls various aspects of the file
parsing such as errmsg, timefmt e sizefmt;

 Include: include will insert the text of a document into the
parsed document. Any included file is subject to the usual access
control;

 Echo: prints the value of one of the include variables;
 Fsize: prints the size of the specified file;
 Flastmod: prints the last modification date of the specified file;

Web Applications: technologies and models

- 70 -

 Exec: executes a given shell command or CGI script. It must be
activated to be used.

Using SSI mechanism to invoke CGI script, we can simplify the script
because no longer need to print out the Content-Type header and the
static part of the page.

<HTML>
<HEAD><TITLE>SSI Example</TITLE></HEAD>

<BODY>

<!--#exec cgi http://mysite.org/cgi-bin/script.cgi -->
</BODY>

</HTML>

You can refer to the URL of a SSI page in the action attribute of the
FORM tag instead of the CGI URL, only if you change the request
method to GET. The server produces an error if you try to use POST,
since the CGI specification requires that bodies of POST requests be
passed to CGI scripts as standard input.

Browsers are responsible for parsing pages and submitting additional
requests for images and other embedded objects, while web servers do
not parse static page. The server cannot discover and execute SSI
macros without parsing pages, for this reason pages containing SSI
macros are assigned different extension file (e.g. shtml) to indicate that
a special processing is required.
CGI scripts that are invoked within SSI pages have access to additional
context information that is not available in standalone mode. In
addition to the CGI variable set, the following variables are made
available:
 DOCUMENT_NAME: The current filename.
 DOCUMENT_URI: The virtual path to this document (such as

/docs/tutorials/foo.shtml).
 QUERY_STRING_UNESCAPED: The unescaped version of any

search query the client sent, with all shell-special characters
escaped with \.

http://mysite.org/cgi-bin/script.cgi

Web Applications: technologies and models

- 71 -

 DATE_LOCAL: The current date, local time zone. Subject to the
timefmt parameter to the config command.

 DATE_GMT: Same as DATE_LOCAL but in Greenwich mean
time.

 LAST_MODIFIED: The last modification date of the current
document. Subject to timefmt like the others.

The output of a standalone CGI script is sent to the browser after the
server ends to execute the script, while the SSI mechanism provides a
simple and convenient way to add dynamic content to existing pages
without having to generate the entire page.
The price of convenience in using SSI is:

 Additional load on the web server;
 Security worries since fully enabling SSI means allowing page

owners to execute server-side programs.

The security concerns lead server administrators to impose very
serious limitations on SSI mechanism, which limits the portability of
SSI pages.

Web Applications: technologies and models

- 72 -

3.9 PHP

PHP is a recursive acronym that stands for “PHP Hypertext
Preprocessor” (though it originally stood for “Personal Home Page” in
1995). It allows embedding code within HTML templates, using a
language similar to Perl and Unix shells.

Let’s consider the following example, GuestList.php:

<html>

<head>
 <title> Party List</title>
</head>

<body>

<?php
$guest[00]=”Irma”;
$guest[01]=”Salvatore”;
$guest[02]=”Caterina”;
$guest[03]=”Simone”;
?>

<p> The list of participants to the event is: </p>

<?php
 Foreach ($aGuest as $Guest) {
 Echo “”.$aGuest.”;
 };
?>

</body>
</html>

Web Applications: technologies and models

- 73 -

Figure 3.16 – PHP request processing

The .php file is pre-processed by the server considering the text
embedded within “<?php ?>” blocks as PHP syntax, while text
outside these blocks as arguments passed to “print” statements.
The resulting output file of pre-processing phase is the following file.

Print “<html>”;
Print “<head>”;
Print “<title>Party List</title>”;
Print “</head>”;
Print “<body>”;

$guest[00]=”Irma”;
$guest[01]=”Salvatore”;
$guest[02]=”Caterina”;
$guest[03]=”Simone”;

Print “<p> The list of participants to the event is: </p>”;
Print “”;

Foreach ($aGuest as $Guest) {
 Echo “”.$aGuest.”;
 };

Print “”;
Print “</body>”;
Print “</html>”;

Web Applications: technologies and models

- 74 -

Then the file above is processed by PHP processor generating the
following HTML document to send back to the user:

<html>
<head>
<title>Party List</title>
</head>
<body>

<p> The list of participants to the event is: </p>

Irma
Salvatore
Caterina
Simone

</body>
</html>

We now give a look to the PHP Web Server in order to better
understand how PHP web pages are handled.

Figure 3.17 – PHP Web Server

Web Applications: technologies and models

- 75 -

Zend refers to the language engine, PHP's core. “The Zend Engine is
an open source scripting engine opcode-based: (a Virtual Machine) ,
commonly known for the important role it plays in the web
automation language PHP. It was originally developed by Andi
Gutmans and Zeev Suraski while they were students at the Technion -
Israel Institute of Technology. They later founded a company called
Zend Technologies in Ramat Gan, Israel. The name Zend is a
combination of their forenames, Zeev and Andi.”11

Now we are going to explain the most important modules of PHP web
server shown in Figure 3.17.

External modules can be loaded from the disk at script runtime using
the function “bool dl (string $library)”. After the script is
terminated, the external module is discarded from memory.

Built-in modules are compiled directly into PHP and carried around
with every PHP process; their functionality is available to every script
that's being run.

Memory Management: Zend gets full control over all memory
allocations in fact it determine whether a block is in use, automatically
freeing unused blocks and blocks with lost references, and thus
prevent memory leaks.

Zend Executor: Zend Engine compiles the PHP Code in the
intermediate code Opcode which is executed by the Zend Executor
which converts it to machine language.

A PHP script is executed by walking it through the following steps:

1. The script is run through a lexical analyzer to convert the human-
readable code into tokens. These tokens are then passed to the
parser.

11 http://en.wikipedia.org/wiki/Zend_Engine.

http://en.wikipedia.org/wiki/Zend_Engine.

Web Applications: technologies and models

- 76 -

2. The parser parses, manipulates and optimizes the stream of
tokens passed to it from the lexical analyzer and generates an
intermediate code called opcodes12 that runs on the Zend Engine.
This two steps which represents the compilation phase are
provided by the Run-Time Compiler module as shown in Figure
3.17.

3. After the intermediate code is generated, it is passed to the
Executor. The executor steps through the op array, using a
function for each opcode.

12 This intermediate code (opcodes) is an ordered array of instructions (known as opcodesshort for
operation code) that are basically three-address code: two operands for the inputs, a third operand for
the result, plus the handler that will process the operands. The operands are either constants or an
offset to a temporary variable, which is effectively a register in the Zend virtual machine.

Web Applications: technologies and models

- 77 -

3.10 Java Servlet API

The Java Servlet API implements a programmatic approach to dynamic
page generation using Java. In other words they are programs that run
on a Web server and build Web pages.
 “A servlet is a Java™ technology-based Web component, managed by a
container, that generates dynamic content. Like other Java technology-based
components, servlets are platform-independent Java classes that are compiled
to platform-neutral byte code that can be loaded dynamically into and run by
a Java technology-enabled Web server. Containers, sometimes called servlet
engines, are Web server extensions that provide servlet functionality.
Servlets interact with Web clients via a request/response paradigm
implemented by the servlet container.”13 The servlets are the server-side
counterpart of the applets, but they don’t have any user interface.
“The servlet container is a part of a Web server or application server that
provides the network services over which requests and responses are sent,
decodes MIME-based requests, and formats MIME-based responses. A
servlet container also contains and manages servlets through their lifecycle.”14

Before going over the processing flow of a web application using Java
Servlet, we analyze the Servlet interface.

Figure 3.18 – Java Servlet Web Application

13 Rajiv Mordani, Java Servlet specification Version 3.0, Sun Microsystem, December 2009. What is a Servlet?.
14 Rajiv Mordani, Java Servlet specification Version 3.0, Sun Microsystem, December 2009. What is a Servlet
Container?

Web Applications: technologies and models

- 78 -

Figure 3.19 – Java Servlet API

The Servlet interface is the central abstraction of the Java Servlet API.
All servlets implement this interface either directly, or more
commonly, by extending a class that implements the interface. The two
classes in the Java Servlet API that implement the Servlet interface are
GenericServlet and HttpServlet. For most purposes, developers will
extend HttpServlet to implement their servlets.
The javax.servlet.Servlet interface is characterized by:

 void init(ServletConfig config): it initialize the servlet

and if it is necessary it provides to the acquisition of global
resources.

 void service(ServletRequest req, ServletResponse res): it
contains the code to process a user request.

 void destroy(): destroy the servlet and release the acquired
resources.

 ServletConfig getServletConfig(): this methods gives the
possibility to access the server initialization parameters and
server information of the Servlet Context.

 java.lang.String getServletInfo(): return an information
string to the servlet related to: Author, function, copyright, etc.;

 and so on.

Web Applications: technologies and models

- 79 -

Here is a simple general servlet implementation extending the abstract
class GenericServlet.

// Import Section
 import java.util.*;
 import java.io.*;
 import java.servlet.*;
 import java.servelet.http.*;

// My Servlet class definition
 public class MyServlet extends GenericServlet {

 public void service (ServletRequest request, ServletResponse response)
 throws ServletException, IOException
 {
 ….
 }
 …
}

The service method requires the request and response parameters.
The request and response parameters encapsulate the data received by
the client and sent to the client. The servlets use the input stream and
the output stream to receive and send data.

ServletInputStream in=request.GetInputStream();
ServletOutputStream out=response.GetOutputStream();

The HttpServlet abstract subclass extending GenericServlet adds
additional methods beyond the basic Servlet interface that are
automatically called by the service method in the HttpServlet class to
aid in processing HTTP-based requests. These methods are:
 doGet for handling HTTP GET requests
 doPost for handling HTTP POST requests
 doPut for handling HTTP PUT requests
 doDelete for handling HTTP DELETE
 doHead for handling HTTP HEAD requests
 doOptions for handling HTTP OPTIONS requests
 doTrace for handling HTTP TRACE requests

Service method of HttpServlet class handles standard HTTP requests by
dispatching them to the appropriate handler method.
Servlets typically run on multithreaded web servers. For this reason,
we must handle concurrent requests access to shared resources such as

Web Applications: technologies and models

- 80 -

in-memory data for example instance or class variables and external
objects for example files, database connections, and network
connections.

Servlet Life Cycle
A servlet is managed through a well defined life cycle. Let’s analyse it
in details:

1) Loading and Instantiation: The servlet container is responsible
for loading and instantiating servlets. The servlet container
loads the servlet class using normal Java class and initializes the
servlet instance by calling the init method of the Servlet
interface.

2) Request Handling: After a servlet is properly initialized, the
servlet container may use it to handle client requests. Requests
are represented by request objects of type ServletRequest. For
every arriving request the servlet container calls the service()
method using a different thread. As a consequence this
multithreading needs to manage shared resources.

3) End of Service: A servlet instance may be kept active in a servlet
container for any amount of time. When the servlet container
determines that a servlet should be removed from service, it
calls the destroy() method of the Servlet interface to allow the
servlet to release any resources it is using and save any
persistent state. Before the servlet container calls the destroy
method, it must allow any threads that are currently running in
the service method of the servlet to complete execution, or to
exceed a server-defined time limit.

To better understand how servlets work we show a complete example.
It implements a service to validate a numeric code inserted by the user.

ValidateCode.jsp
<html>
 <head> …
 <script language=”Javascript”>
 function IsANumber(iObj) {
 //--
 // Purpose > check if in iObj it is inserted a number.
 //--
 if (isNan(iObj.value)) {
 windows.alert(“Only ciphers are feasible.”);

Web Applications: technologies and models

- 81 -

 iObj.value= “”;
 iObj.focus();
 }

 }
 </script>
</head>

<body>

 <!-- Check if there is an answer from the servlet -->

 <% String MyAnswer=request.GetParameter(“MyAnswer”);
 If (MyAnswer==null) {
 %>

 <!-- visualize the form to insert the code to validate -->
 <form action=http://.../servlet/CheckCode” method=”post”>
 <label for=”code”>Code: </label>
 <input type=”text” name=”code”
 value=”” size=”8” maxlength=”8” onkeyup=”IsANumber(this)”>

 <input type=”submit” value=”Send Code” >
 </form>

 <!—if there is an answer -->

 <% }
 else
 { if (MyAnswer.equals(“YES”))
 { %>
 <p> The inserted code is OK. </p>
 <% }
 else { %>
 <p> The inserted code is wrong. </p>

 <% }
 } %>

</body>
</html>

After inserting the code and when the user presses the “Send Code”
button, the servlet check its validity. A subclass of HttpServlet must
override at least one of these: doGet, doPost, doPut,
doDelete, doInit, Destroy, getServletInfo. While it is not
necessary to override the service method which handles standard
HTTP requests by dispatching them to the handler methods for each
HTTP request type. Here is the related servlet.

Public class CheckCode extends HttpServlet {

 protected void doPost(HttpServletRequest req,
 HttpServletResposne res)
 throws ServletException, IOException {
 String iValue = (String) req.getParameter(“code”);
 int iNumber = Integer.valueOf(iValue).intValue();

 // Check If the inserted Number is a valid number Mod 31
 int Module= iNumber % 31;
 String BackMsg = “NO”;

 If (Module == 0) {
 BackMsg = “YES”;
 };

http://.../servlet/

Web Applications: technologies and models

- 82 -

 RequestDispatcher rd = getServletContext15().getRequestDispatcher(
 “/ValidateCode.jsp?MyAnswer=”+BackMsg);
 res.ContentType(“text/html”);
 if (rd != null){
 rd.forward(req,res);
 }
 }

}

Advantages of Servlets

Efficient. With traditional CGI, a new process is started for each HTTP
request. If the CGI program does a relatively fast operation, the
overhead of starting the process can dominate the execution time.
With servlets, the Java Virtual Machine stays up, and each request is
handled by a lightweight Java thread, not a heavyweight operating
system process. Similarly, in traditional CGI, if there are N
simultaneous request to the same CGI program, then the code for the
CGI program is loaded into memory N times. With servlets, however,
there are N threads but only a single copy of the servlet class. Servlets
also have more alternatives than do regular CGI programs for
optimizations such as caching previous computations, keeping
database connections open, and so on.

Convenient. Servlets have an extensive infrastructure for
automatically parsing and decoding HTML form data, reading and
setting HTTP headers, handling cookies, tracking sessions, and many
other such utilities.

Powerful. Java servlets let you easily do several things that are
difficult or impossible with regular CGI. For one thing, servlets can
talk directly to the Web server (regular CGI programs can't). This
simplifies operations that need to look up images and other data
stored in standard places. Servlets can also share data among each

15 Returns a ServletContext object, which contains information about the network service in which the
servlet is running. Defines a set of methods that a servlet uses to communicate with its servlet
container, for example, to get the MIME type of a file, dispatch requests, or write to a log file. There is
one context per "web application" per Java Virtual Machine. (A "web application" is a collection of servlets
and content installed under a specific subset of the server's URL namespace such as /catalog and possibly
installed via a .war file.)

Web Applications: technologies and models

- 83 -

other, making useful things like database connection pools easy to
implement. They can also maintain information from request to
request, simplifying things like session tracking and caching of
previous computations.

Portable. Servlets are written in Java and follow a well-standardized
API. Consequently, servlets written for, say Apache Server can run
virtually unchanged on Microsoft IIS.

Disadvantages of Servlets

Program complexity. The increased performance provided by the
Servlets doesn’t come for free. There is a cost in program complexity.
The multi-threaded servlets require them to address concerns related
to multiuser access to shared resources.

3.11 JAVA SERVER PAGES

Java Server Pages (JSP) are web pages containing a server side HTML-
embedded scripts. As in other web paradigms when a client makes a
request for a JSP page, its code parts are executed on the web server
and the results inserted into the page on behalf of the related code. Its
HTML parts, instead, are left without any transformations. At the end
the resulted page is sent back to the client.

Figure 3.20 – Java Server Pages general architecture

Web Applications: technologies and models

- 84 -

We now analyze the structure and the components of a JSP page. It
generally contains:

 HTML and XML like tags;
 Text
 JSP tags:
 JSP directives: the syntax is <%@ directiveName {attr=”value”}

%>. They are instruction to the Web container. Here are some
examples:

<%@page import =”java.util.Date”%>
<%@page import=”java.util.Date,java.rmi.*”
 session=”true” isThreadSafe=”true”%>
<%@ include file =”JSP-EX/test.html”%>

 Scripting elements: they give the possibility to insert Java

code in a JSP page:
 <% Statements Java %>: for Java code block called

scriptlet;
 <%= Expressions %>;
 <%! Declarations %>;
 <%-- Comments %>

 Actions: they are used at the execution time while the

directives are used at compilation time. Here is some
examples:

<jsp:include page=”toc.html”/>
<jsp:include page=”clock.jsp” flush=”true”/>,

flush specifies whether the buffer should be flushed before
the include is performed.

<jsp:forward page=”forward.jsp” />
 <jsp:param name=”date”
 Value=”<%=new java.util.Date() %> />
</jsp:forward>

it forwards the request to another JSP web page.

Web Applications: technologies and models

- 85 -

Here is an example of simple JSP page:

<%@page import =”java.util.Date”%>
<html>
 <body>
 The current time is <% =(new Date().toString() %>
 <%@include file=”JSP-EX/test.html” %>
 </body>
</html>

JSP page’s lifecycle
When a client request a JSP web page, the JSP Container manages two
phases of a JSP page’s lifecycle: the translation phase and the execution
phase.
In the translation phase, the container validates the syntactic correctness
of the JSP page and tag files and determines a JSP implementation
class that corresponds to the JSP page. From the JSP page the JSP
Container generates a Servlet which extends the implementations of
the interface javax.servlet.jsp.HttpJspPage if the protocol is HTTP. The
javax.servlet.jsp.HttpJspPage interface is characterized by:

 public void jspInit(): this method is invoked by the JSP
Container when the generated Servlet is initilized.

 public void jspDestroy(): this method is invoked by the JSP
Container when the generated Servlet is destroyed.

 public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException: this method is invoked to each HTTP request.

The translation phase is performed only the first time that the JSP page
is requested otherwise the request is directly redirected to the related
Servelet. For this reason the first request has a delay to deliver longer
than the next ones.

At the execution phase the JSP Container manages one o more instances
of Servlet (implementation object) in response to requests and other
events. The JSP Container is responsible for instantiating request and
response object and invoking the appropriate JSP page
implementation object. At the completion of the processing, the
response object is received by the container for communication to the

Web Applications: technologies and models

- 86 -

client. Practically a JSP page is represented at execution time by a JSP
page implementation object and is executed by a JSP Container. The
JSP implementation object is a servlet. The JSP Container delivers
requests from client to a JSP page implementation object and responses
from JSP implementation object to the client. Moreover the JSP
Container automatically makes a number of server-side objects
available to the JSP page implementation object.
Here is a simple example showing the Servlet generation from a
requested JSP page.

ShowCurrentDate.jsp
<%@page import =”java.util.Date”%>
<html>
 <body>
 The current time is <% =(new Date()).toString() %>
 </body>
</html>

The related generated Servlet is:
Public class ShowCurrentDate extends javax.servlet.jsp.HttpJspPage
… {

 Public void _jspService(HttpServletRequest request,
 HttpServletResponse resposnse) throws …
{
 …
 out.write(“<html>\r\n”);
 out.write(“<body>\r\n”);
 out.print(“The current time is”+(new Date()).toString());
 out.write(“</body>\r\n”);
 out.write(“</html>\r\n”);
 out.close();
 }
 …
}

Scriplets and Java Beans
When the scriplets contain a lot of code it is difficult to read and
maintain them. To face this problem the Java Beans were introduced.
They permit to separate the application logic from the interface logic.
A JSP page, which use Java Beans, contains HTML mark-up and
calling to the methods in the Beans.

Web Applications: technologies and models

- 87 -

The <jsp: usebean> tag allows to embed a Java Bean within a JSP
page. Its properties can be accessed and modified using the <jsp:
getProperty> and <jsp: setPropery> constructs. The JSP
translation process, which takes place prior to compilation and
execution, converts these constructs into Java code. Here is an
example.

JSP page snippet
<jsp:usebean id="myBean" class="mypackage.MyBean" scope="session" />
...
 <p>The value of the 'Thing' property is
 '<jsp:getProperty name="myBean" property="thing" />. </p>

Translation
MyBean myBean = (MyBean) session.getAttribute(“myBean”);

out.print(“<p>The value of the ‘thing’ property is’”+
 myBean.getThing().toString()+”’.</p>”;

Web Applications: technologies and models

- 88 -

3.12 JAVA STANDARD TAG LIBRARY (JSTL)

JSTL provides an enhancement to JSP development platform. It
specifies a standard set of tags for iteration, conditional processing,
and others functions. Associated with JSTL there is an expression
language (called EL) which provides access to variables defined in the
web page, request, session, and application scopes. The notation for
these variables is Unix-like:

$(scopeName.variableName).

JSTL and its associated expression language were incorporated into
the JSP specification with the advent of JSP 2.0.
Here is an example that shows the use of JSTL and EL.

<%@ taglib uri=”java.sun.com/jstl/core” prefix=”code” %>
<%@ taglib uri=”java.sun.com/jstl/sql” prefix=”sql” %>

<sql:setDataSource var=”myDatabase” driver=”com.mysql.jdbc.Driver”
url=”jdbc: …” scope=”session” />

<sql:query var=”eContacts” dataSource=”$(myDatabase)”>
 Select name, email
 From eContacts
</sql:query>

<html>

<head>
 <title>
 Mail List
 </title>
</head>

<body>
 <table>
 <tr>
 <td>
 Name
 <td>
 <td>
 e-mail
 <td>
 </tr>
 <code:forEach var=”contact” items=”&(contacts.rows)”>

Web Applications: technologies and models

- 89 -

 <tr>
 <td>
 $(contact.name)
 <td>
 <td>
 $(contact.email)
 <td>
 </tr>
 </code:forEach>
 </table>
</body>
</html>

3.13 JAVASERVER FACES (JSF)

JSF is an additional Java technology and framework for building web
applications which was developed since introduction of Java Servlet
and JSP technology. JSF is Sun’s response to .NET’s UI functionality.
JSF is a server-side user interface component framework for Java
technology-based web application.

Figure 3.21 – Java Web Application Technologies.

The components of JavaServer Faces technology are the follows:

 An API for representing UI components and managing their state;
handling events, server-side validation, and data conversion;
defining page navigation; supporting internationalization and
accessibility and son on;

 Two JSP custom tag libraries for expressing UI components within
JSP page and for wiring components to server-side objects.

Web Applications: technologies and models

- 90 -

Figure 3.22 – JavaServer Faces Web Application.

In a JSF web application the user interface (represented by myUI in the
figure 3.22) runs on the server and renders back to the client.
The JSP page myform.jsp in the figure 3.22 includes JavaServer tags to
express the user interface components. The UI for the web application
represented by myUI manages the objects referenced by the JSP page.
These objects include:

 the UI components objects that map to the tags on the JSP page;
 any event listeners, validators, and converters that are registered

on the components;
 the JavaBeans components that encapsulate the data and

application-specific functionality of the components.

Here is an example16 of JSP page using the JSF technology.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>

<h:form id="helloForm1">
<h2>Hi. My name is Duke. I’m thinking of a number from
<h:outputText lang="en_US"
 value="#{UserNumberBean.minimum}"/>to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.gif" />

<h:inputText id="userNo" label="UserNumber"
 value="#{UserNumberBean.userNumber}">

<f:validateLongRange
 minimum="#{UserNumberBean.minimum}"
 maximum="#{UserNumberBean.maximum}" />

</h:inputText>
<h:commandButtonid="submit" action="success" value="Submit" />

</h:form>
</f:view>

16 This example has been taken from The Java EE 5 Tutorial for Java Sun System
Applications Server 9.1, Oracle, June 2010.

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Web Applications: technologies and models

- 91 -

All JavaServer Faces pages are represented by a tree of components
called view which represents the root of the tree. All JavaServer Faces
components tags must be inside of a view tag, which is defined in the
core tag library.
The form tag represents an input form component and all UI
component tags that represent editable components must be nested
inside this tag. In the form the id="helloForm1" maps to the associated
form UI component on the server.
The JSF framework abstraction and modularity have a trade-off. In fact
for complex pages with many fields the maintaining of the component
layout in the form of component tree in memory has a high costs in
term of processing and memory space.

JavaServer Faces technology offers a basic set of standard reusable UI
components that enable to easily construct UIs for web application. If a
web application requires new functionalities JSF allows to extend a
component or to build a new custom one.
Here is an example with custom UI component17

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://mysite/customCF" prefix="cfc"%>

<f:view>

 <html>
 <head> Custom UI Component</head>
 <body>
 <h:form>
 <p>The HelloWorld UI Component:</p>
 <cfc:jsfhello hellomsg="Hello world!!/>
 </h:form>
 </body>
 </html>

</f:view>

In the following Java code our UIComponent will extend the
UIComponentBase abstract class, which is provided by the JSF
specification, and will render a formatted “Hello World!!” message.

17 The example has been taken from the web site http://www.theserverside.com.

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://mysite/customCF
http://www.theserverside.com.

Web Applications: technologies and models

- 92 -

package cc.hello;
import java.util.Date;
import javax.faces.component.UIComponentBase;
import javax.faces.context.FacesContext;
import java.io.IOException;
import javax.faces.context.ResponseWriter;

public class HelloUIComp extends UIComponentBase
{
 public void encodeBegin(FacesContext context) throws IOException
 {
 ResponseWriter writer = context.getResponseWriter();
 String hellomsg = (String)getAttributes().get("hellomsg");

 writer.startElement("h3", this);
 if(hellomsg != null)
 writer.writeText(hellomsg, "hellomsg");
 else
 writer.writeText("Hello from a custom JSF UI Component!", null);
 writer.endElement("h3");
 writer.startElement("p", this);
 writer.writeText(" Today is: " + new Date(), null);
 writer.endElement("p");
 }

 public String getFamily()
 {
 return "HelloFamily";
 }
}

JavaServer Faces Standard Request-Response Life Cycle
The life cycle handles both kinds of requests: initial requests and
postbacks. When a user makes a request for the first time, it only
executes the restore view and render response phases. When a user
submits the form contained on a page (postback) that was previously
loaded into the browser as a result of executing an initial request, the
life cycle handles a postback executing all of the phases shown in
figure 3.23.

Figure 3.23 – JavaServer Faces Life Cycle.

Web Applications: technologies and models

- 93 -

3.14 ISAPI

Microsoft introduced an alternative to CGI, the Internet Server
Application Programming Interface (or ISAPI). It resolves the most
limiting features of CGI applications.

Figure 3.24– Traditional CGI interface

For each client HTTP request of a CGI application, the web server
executes a new system process, processes the user’s request, and
servers the results of CGI application’s to the client. The problem with
this approach is that a separate CGI application is loaded for each
request. This can drain the server’s resources and makes difficult to
develop responsive web application.

Web Applications: technologies and models

- 94 -

Figure 3.25 – Extending the Architecture within the Server with ISAPI

ISAPI uses an architecture relied on dynamic link libraries (DLLs).
Each ISAPI application is in the form of a single DLL that is loaded
into the same memory space as the web server (in-process). Once in
memory, the DLL stays in memory, answering user request until it is
explicitly released from memory. The advantages of this architecture
are:
 an increase in efficiency in memory usage;
 faster performance than CGI applications, because the web

server does not have to instantiate a new application every time
a request is made.

An Internet Server API (ISAPI)-compliant server can enhance its
capabilities by using ISAPI server extensions which are DLL that can be
loaded and called by an HTTP server. ISAPI extensions are true
applications that run on IIS and have access to all of the functionality
provided by IIS. In fact these Internet server extensions are also known
as Internet server applications (ISAs).

In IIS, ASP functionality is contained in an ISAPI extension called
ASP.dll. Any file that is requested from the IIS server that ends in ".asp"
is mapped to ASP.dll which is assigned to process the file before
displaying its output in the client’s window. A client can request an
ISAPI extension in the following way:

http://Server_name/ISAPI_name.dll/Parameter

http://Server_name/ISAPI_name.dll/Parameter

Web Applications: technologies and models

- 95 -

As a consequence to request an ASP file, a client can request a URL
like:

http://Server_name/ASP.dll/File_name.asp

because ASP files are processed by the ISAPI extension named:

%windir%\system32\inetsrv\ASP.dll.

However, to simplify ASP requests, IIS uses a script mapping that
associates .asp file name extensions with ASP.dll. When a request such
as:

http://Server_name/File_name.asp

is received, IIS runs the ASP.dll ISAPI extension to service the request
and load that file for processing. Many applications that run on IIS are
actually ISAPI extensions that are script-mapped to process files with
specific file name extensions.

In addition to ISAPI application, ISAPI allows the development of
ISAPI filter. An ISAPI filter is a DLL that runs on an ISAPI-enabled
HTTP server to filter data traveling to and from the server. The filter
registers for notification of events, such as logging on or URL
mapping. When the selected events occur, the filter is called, and you
can monitor and change the data. ISAPI filters can be used to provide
enhanced logging of HTTP requests, custom encryption, custom
compression, or additional authentication methods.

http://Server_name/ASP.dll/File_name.asp
http://Server_name/File_name.asp

Web Applications: technologies and models

- 96 -

Figure 3.26 – The extension interface for IIS

3.15 ACTIVE SERVER PAGES

Active Server Pages (ASP), whose code name was Denali, is a
proprietary technology developed by Microsoft late in the life of
Internet Information Server 2.0 by the late 1990s. This ASP technology
is encapsulated in a single, small (300K) DLL called ASP.DLL. This
DLL is an ISAPI extension that resides in the same memory space as
Internet Information Server. Whenever a user requests a file whose file
extension is ASP, the ASP ISAPI extension handles the interpretation.
It loads any required scripting language interpreter DLLs in memory,
executes any server-side code found in the Active Server Pages, and
passes the resulting HTML to the web server, which then sends it to
the requesting browser. We explain with an example how an ASP page
is processed by the ISAPI extension ASP.DLL running inside the IIS
process.

Web Applications: technologies and models

- 97 -

Figure 3.27 – Processing Server-Side Script using ASP ISAPI Extension.

We now show with an example how an .asp page is processed. Let us
consider the following .asp file Sample.asp.

Sample.ASP
<%@ LANGUAGE=”VBSCRIPT” %>
<HTML>
 <HEAD>
 <TITLE> ASP sample </TITLE>
 </HEAD>
 <BODY>
 <H1> Processing using ASP ISAPI Extension </H1>
 <% For nCounter = 1 to 3 Step 1%>
 <FONT SIZE= <% =nCounter %> >
 Hello size <% =nCounter %>

 <% Next %>
 </BODY>

</HTML>

As showed in the Fig. 5.27 the process is composed of the following
steps:

1) Browser requests Sample.asp from the Web Server;
2) IIS calls the ISAPI extension ASP.DLL and passes the requested

to it;
3) ASP.DLL carries out all the necessary actions and when if

finishes processing it passes its output back to IIS for sending it
to the client;

4) IIS sends Sample.asp in HTML format to the client.

Web Applications: technologies and models

- 98 -

The output of Sample.ASP after pre-processing
Response.write ‘<HTML>’
Response.write ‘<HEAD>’
Response.write ‘<TITLE> ASP sample </TITLE>’
Response.write ‘</HEAD>’
Response.write ‘<BODY>’
Response.write ‘<H1>’
Response.write ‘Processing using ASP ISAPI Filter’
Response.write ‘</H1>

For nCounter = 1 to 3 Step 1
 Response.write ‘<FONT SIZE=’
 Response.write nCounter
 Response.write ‘>’
 Response.write ‘Hello size ’
 Response.write nCounter
 Response.write ‘
’
Next

Response.write ‘
’
Response.write ‘</BODY>’
Response.write ‘
’
Response.write ‘</HTML>’

The result of the output of Sample.ASP after processing
<HTML>
 <HEAD>
 <TITLE> ASP sample </TITLE>
 </HEAD>
 <BODY>
 <H1> Processing using ASP ISAPI Filter </H1>

 Hello size 1

 Hello size 2

 Hello size 3

 </BODY>

</HTML>

An ASP page is practically an extended HTML page which can
includes code which is executed serve-side. While HTML pages are
enclosed to the HTTP response without any content check, ASP files

Web Applications: technologies and models

- 99 -

are parsed line by line, processing the parts enclosed between the tag
<script runat=”server”> .. “</script>. Then any output of
the executed script is queued to HTTP response.
ASP is not a programming language but an environment in which
many programming languages are hosted. Microsoft distributes with
ASP the Visual Basic Script (VBS) and JavaScript, in addition to them
there are other free web distributed interpreters such as the PERL
interpreter called PerlScript.
ASP allows inserting in the same file .asp script of different languages.
Here is an example.

<html>
 <head>
 </head>
 <body>
 <h1>A list produced by a back-end ASP in VBS and JS</h1>

 <script language=”vbscript” runat=”server”>
 For i=1 to 5 step 1
 Response.Write(i & “ “)
 Next
 </script>

 <script language=”jscript” runat=”server”>
 for (j=6; j<=10; j++){
 Response.Write(j+ “ “);
 }
 </script>

 <body>
</html>

It is clear that the execution time of an ASP page written in this
manner is longer, because the web server has to activate two script
interpreters instead of one. Moreover it isn’t guaranteed that the parts
of different written codes are executed in the same order as they are
written in the web page. The previous page could produce on the user
agent the following output.

6 7 8 9 10
A list produced by a back-end ASP in VBS and JS
1 2 3 4 5

Web Applications: technologies and models

- 100 -

The web server gives the possibility to choose a default script language
to be used in the ASP web pages or we can specify it in the first line of
every web page:

<%@ LANGUAGE=”VBscript” %>

This allows to abbreviate the tag which identifies and contains the
scripts from:

<script language=”Script Language” runat=”server”> … </script>

to:

<% … %>.

Visual basic Script is not a dedicated programming language to the
web environment. All the functionalities to use VBS in the .asp pages
are supplied by the same ASP environment which provides five
built-in objects which are automatically instantiated before the
execution of an .asp page. These objects are described in the following
table.

Web Applications: technologies and models

- 101 -

Table 3.1 – ASP built-in objects18

Built-in object Description

Application object

Describes the methods, properties, and
collections of the object that stores
information related to the entire Web
application, including variables and objects
that exist for the lifetime of the application.

Request Object

Describes the methods, properties, and
collections of the object that stores
information related to the HTTP request. This
includes forms, cookies, server variables, and
certificate data.

Response Object

Describes the methods, properties, and
collections of the object that stores
information related to the server's response.
This includes displaying content,
manipulating headers, setting locales, and
redirecting requests.

Server Object

Describes the methods and properties of the
object that provides methods for various
server tasks. With these methods you can
execute code, get error conditions, encode text
strings, create objects for use by the Web page,
and map physical paths.

Session Object

Describes the methods, properties, and
collections of the object that stores
information related to the user's session,
including variables and objects that exist for
the lifetime of the session.

The functionality provided by the built-in objects is not enough to
cover the necessities of the web server. They are helped by external
objects via the ActiveX technology.

18 From Microsoft “IIS ASP Scripting Reference” from the section of “ASP Built-in Objects” at the web page
http://msdn.microsoft.com/en-us/library/ms524664(v=VS.90).aspx.

http://msdn.microsoft.com/en-us/library/ms524664(v=VS.90).aspx.

Web Applications: technologies and models

- 102 -

Many of these ActiveX objects are considered as standard component so
that they are installed together the built-in objects on the web server,
while others are installed according to specific necessities.
This gives from on side more flexibility to the ASP server but on the
other side it produces less portability of an ASP application.

Here is an example in which using an ActiveX component, we realize a
internal page counter.

<%@ LANGUAGE =”JScript” %>
<html>

 <head>
 <title>
 Counter Page Example
 </title>
 </head>

 <body
 you are the visitor number:

 <%
 var MyTextFile = Server.MapPath(“counter.txt”);
 var fobj = new ActiveXObject(“Scripting.FileSystemObject”);
 var InStream = fobj.OpenTextFile(MyTextFile);
 var StrNumber = InStream.ReadLine();
 InStream.Close();
 var IntNumber = parseInt(StrNumber);
 IntNumber++;
 Var OutStream = fobj.CreateTextFile(MyTextFile);
 OutStream.WriteLine(IntNumber);
 OutStream.Close();
 Response.Write(IntNumber);
 %>

 </body>

</html>

Web Applications: technologies and models

- 103 -

3.16 .ASP NET

ASP.NET made the web really simple to work and every developer,
with a limited or no skills in HTML and JavaScript, a lot more
productive. To achieve this result, ASP.NET was designed around the
concept of Web Forms which are only focused on UI and on RAD. In
fact the Web Forms try to reproduce the Windows Forms model
introduced by the Microsoft .NET Framework.
In the Windows Form model we have that every action, generally by
the user, corresponds a reaction as shown in Figure 5.28.

Figure 3.28 – Windows Forms

Since the Web is based on the HTTP stateless protocol, implementing
an event model over HTTP requires any data related to the client-side
user’s activity to be forwarded to the server for synchronizing the
state. The Web server de-serializes the state, when a web page is
requested, processes the client’s actions, uploads the state if it is
necessary and then serializes the state when the HTML response is
generated as shown in Figure 3.29.

Web Applications: technologies and models

- 104 -

Figure 3.29 – Web Forms

In ASP.NET the page HTML template is abstracted to a page class, as a
consequence the resulting programming model is known as Web
Forms.

The Web Forms model

The Web Forms model is based on three pillars:

1) Page postbacks;
2) View State;
3) Server Controls.
4) The automatic State Control using the ViewState that will be

explained in the chapter 7.

Page Postpacks
An ASP.NET page is based on a simple form component that contains
all of the input elements and submissions elements (buttons or links)
the user can interact with.
By default a form submission sends the content of the current form to
the same URL of the current page. This is known as the postbacks. In
other words, the page is a constituent block of the application and
contains both a visual interface and the logic to process user events.
Let’s see an example to show how this technology works. Suppose that

Web Applications: technologies and models

- 105 -

the user clicks on a button hosted in a page that is displayed within the
client browser. This click instructs the browser to request a new
instance of the same page from the web server. That means the
browser also uploads any content in the page’s form. On the web
server, the ASP.NET runtime processes the request and ends up
executing some code. The following code shows the link between the
button component and the handler code to run.

<asp: Button runat=”server” ID=”ButtonOK”
 OnClick=”ButtonOK_Click” />

The server-side handler of the client-side event written in C# could be:

public void ButtonOK_Click
 (object sender, EventArgs args)
{

 // sets the label to display the text
 Label1.Text = “The button OK has been pressed.”;
}

In this manner the developer can update the user interface by
modifying the state of the server controls.

View State
The View State is a unique and encoded hidden field that stores a
dictionary of values for all controls in the unique form of ASP.NET
page.
By default, each page control saves its entire state (all of its property
values) to the View State. It takes up a few dozen KBs of extra data.
This is downloaded to the client and uploaded to the server with every
request for the page, moreover the View State is never used (and
should not be used) on the client.
Because of its size, the View State is often considered a weight on the
shoulders of an ASP.NET page as a way to waste some bandwidth. A
way to face this problem is to disable it for all controls that don’t need
it. This can be done programmatically through the EnableViewState
property or in ASP.NET 4 via ViewStateMode property.

Web Applications: technologies and models

- 106 -

Server Controls
An ASP.NET page, which represents a Web Form, is a mix of HTML
literals and markup for ASP.NET server controls. The difference
between a server control and a plain HTML literal is the presence of
runat attribute, which identifies a server control. This is a component
with a public interface that can be configured using markup tags, child
tags and attributes. Each server control is characterized by a unique ID
and is fully identified by that.

Page Controller pattern in ASP.NET Web Forms
To handle the postback means to serve an incoming HTTP request. At
the lowest level ASP.NET interfaces with IIS through an ISAPI
extension. With ASP.NET this request usually is routed to a page with
an .aspx extension, but how the process works depends entirely on the
implementation of the HTTP Handler that is set up to handle the
specified extension. In IIS .aspx is mapped through an Application
Extension that in turn is mapped to the ASP.NET ISAPI DLL -
aspnet_isapi.dll. Every request that fires ASP.NET must go through an
extension that is registered and points at aspnet_isapi.dll, which lives in
the .NET Framework directory.

<.NET FrameworkDir>\aspnet_isapi.dll

Figure 5.30 – IIS maps various extensions like .ASPX to the ASP.NET ISAPI extension.

Web Applications: technologies and models

- 107 -

That extension is the basic mapping mechanism that ASP.NET uses to
receive a request from ISAPI and then route it to a specific handler that
processes the request.
As we can see in Figure 5.31 internally the HTTP handler gets the
input from the HTTP packet, processes as Page Controller the request
and prepares a return HTTP packet containing HTML for the browser.

Figure 3.31 – How ASP.NET runtime engine works on server-side.

The HTTP handler component is an instance of a class that implements
IHttpHandler interface.

public interface IHttpHandler / IHttpAsyncHandler
{
 public void ProcessRequest(HttpContext context);
 public bool IsReusable;
}

Processing the request is a task that goes through a number of steps
called page life cycle as shown in Figure 3.32. It consists of set of events,
working at page level known as Page Controller, called according to a
determined sequence:

1) Init: initializing the page;

Web Applications: technologies and models

- 108 -

2) Load: restore the page’s state;
3) Postback: updating the page;
4) PreRender: rendering the page;
5) Unload: unloading the page.

The base page class System.Web.UI.Page, which implements the virtual
event and methods of IHttpHandler interface, contains the code to
handle the Web Form. This derived class is known as code-behind
classes. Any customization is possible only in the overridable page
methods (e.g. LoadViewState, SaveViewState) of code-behind class of the
page.

Figure 3.32 – Page Controller pattern.

The limits of ASP.NET
Productivity is a great thing, but not if it forces you to sacrifice some
other aspects of a good model, such as maintainability, readability,
design, testability, an control of HTML. In fact a server control is a

Web Applications: technologies and models

- 109 -

black-box component, when declaratively or programmatically
configured, ends up outputting HTML and JavaScript for the browser.

3.17 ASP.NET MVC
The Microsoft ASP.NET MVC framework is Microsoft’s newest
framework for building web application. The ASP.NET MVC
framework was designed from the ground up to make it easier to
build good software. It has a different engine and allows much more
control over the generated mark-up.

Figure 3.33 – The ASP.NET Frameworks

On top of ASP.NET Framework there are two frameworks for building
web applications: ASP.NET Web Forms and ASP.NET MVC. ASP.NET
MVC is an alternative to, but not a replacement for ASP.NET Web
Forms.
An MVC (Model View Controller) application is divided into the
following three parts:

 Model: The model includes all of an application’s validation

logic, business logic, and data access logic.
 View: The View contains HTML mark-up and view logic and

interacts with the Model to update its contents.
 Controller: The Controller contains control-flow logic. It

interacts with MVC models and View to control the flow of
application execution.

Web Applications: technologies and models

- 110 -

When you write an ASP.NET MVC application, you think in term of
controllers and views. Each request is resolved by invoking a method
on a controller class. No postbacks are ever required to service a user
request, and no view state is ever required to maintain the state of the
page. Finally, no server controls exist to produce HTML for the
browser.

The ASP.NET MVC Folder conventions reflect the same MVC
framework in fact a MVC application project contains the following
folders:

 App_Data: contains Database files, for example it might contain

a local instance of a SQL Server Express database;
 Content: contains static content such as images and CSS files.
 Controllers: contains ASP.NET MVC controller classes.
 Models: contains ASP.NET MVC model classes.
 Scripts: contains JavaScript files including the ASP.NET AJAX

Library and JQuery;
 Views: contains ASP.NET MVC Views.

Let us see an example of a simple ASP.NET MVC application that does
not contains any business or data access logic, so it does not contain
any ASP.NET MVC model classes.
Here is the Controller of the example located in the folder
\Controllers written in C#:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MyFirstMVCApp.Controllers
{
 [HandleError]
 public class HomeController : Controller
 {
 public ActionResult Index()
 ViewData[“Message”]=”Welcome to ASP.NET MVC!”;
 return View();
 }
 public ActionResult About()
 {
 // Create the view (explicit name)
 Return View(“About”);

Web Applications: technologies and models

- 111 -

 }
}

The methods exposed by the controller are named Index() and
About(). They are named actions, and both actions return a view.
When you first run the web application, the Index() action is invoked
and this action returns the Index view. When you click the About, it
entails URL like:

http://Host/WebApplication/HomeController/About

that determines the invocation of the About() action and the return of
the About view. The two views can be found in the Views folder at the
following location:

\Views\Home\About.aspx
\Views\Home\Index.aspx

The content of the Index view is contained in the following listing:

<%@ Page Language=”C#” MasterPageFile=”/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”indexTitle” ContentPlaceHolderID=”TitleContent”
runat=”server”>
Home Page
</asp:Content>

<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent”
runat=”server”>

<h2> <%= Html.encode(ViewData([“Message”]) %> </h2>
<p>
 ASP.NET MVC
</p>

</asp:Content>

The working machinery of ASP.NET MVC is based on a combination
of patterns: the Front Controllers and the Model2 pattern. In the Front
Controller approach, all incoming requests are managed using a
centralized component: the MVC HTTP Handler. This common class
contains the logic that parses the URL and decides which controller is
due to service the request and which view component is due to produce the

http://Host/WebApplication/HomeController/About
http://asp.net/mvc�

Web Applications: technologies and models

- 112 -

resulting HTML. In the Page Controller instead, there’s a different
handler for each request determined on a URL by URL basis.

Figure 3.34 – The Page Controller and Front Controller patterns.

The Model2 pattern19 rules on the interaction between the Front
Controller and the specific-controller and views.
We can see on Figure 3.35 how the Front Controller figures out the
controller to use and invokes one of its methods. The controller’s
method runs, gets some data, and figures out the view to use. Finally,

19 The Model-View-Controller design pattern is a time proven architecture for building software that
manages interaction with users (using Views), implements business rules that are dependent on user
input (using Controllers), and relies on data that exists in a remote database or system (accessed using
Model components). MVC originated at the Xerox PARC in the late 1970s, although its roots go back
even further. The terms Model 1 and Model 2 originated in the JSP 0.92 specification.
The primary characteristics of Model 1 are:

 HTTP requests are posted directly to .jsp files;
 The logic for directing program flow, for accessing databases and remote systems, and for

building user displays are all embedded directly in JSP files.
The fundamental characteristics of a Model 2 application are:

 requests from the client browser are posted to the controller, which is Java servlets.
 The controller decides which view (JSP file) it will pass the request to.
 The view then invokes methods in a JavaBean (which may access a database) and returns the

Response object to the Web container, which is then passed on to the client browser.

Web Applications: technologies and models

- 113 -

the view generates the markup for the browser and writes it in the
output response stream.

Figure 3.35 – The Model2 Pattern.

3.18 ASP.NET MVC AND REST
The REpresentational State Transfer (REST) is an architectural style
developed as an abstract model of the Web Architecture in order to
guide the development of good Web Applications.
The goal of this web architecture is to emphasize scalability of
component interactions, generality of interfaces, independent
deployment of component, and intermediary component to reduce
interaction latency, enforce security, and encapsulate legacy systems.
The most important element in REST is a resource. It is identified by a
URI and has a representation (e.g. an HTML documents, or a PNG
image). Then the resources may have multiple representations. In
REST system, blocks of communications consist of requests and
responses. A client requests a resource from a client and then receives
a response from the web server.
A key characteristic of REST is loose coupling, in order to reduce the
amount of dependency and the complexity within a given system.

Web Applications: technologies and models

- 114 -

REST is stateless and consists of transparent, encapsulated layer. In the
communication the message is self-contained, so that server does not
need to keep track of each individual request and where it came from,
all they do is responding to requests as they come.
In this way whatever happens to the server or to the user agent, for
example the web servers get restarted or user agent could drop in the
middle of a conversation, the interaction can continue without errors.
The REST will be explained in details in the chapter 6.

ASP.NET MVC is an excellent example of RESTful framework.
ASP.NET MVC works by sending requests to resources. Each resource
is identified with a URL. The addressable set of resources is the
collection of controller objects. Any request corresponds to an action
executed on addressable resources. Any request returns HTML.

Web Applications: technologies and models

- 115 -

Bibliography

[3.01] http://learn.iis.net/: the official Microsoft IIS site;

[3.02] Leon Shklar, Rich Rosen, Web architecture: Principles, Protocols
and Practices, Second Edition Wiley and Sons Ltd Publications
2009;

[3.03] http://hoohoo.ncsa.illinois.edu/cgi/interface.htm:l the original
CGI Specification;

[3.04] http://www.cs.tut.fi/~jkorpela/forms/cgic.html Getting Started with
CGI Programming in C;

[3.05] Rajiv Mordani, Java Servlet Specification, Sun Microsystem. 2009;

[3.06] Vito Roberto, Marco Frailis, Alessio Gugliotta, Paolo Omero,
Introduzione alle tecnologie WEB, McGraw.Hill, 2005;

[3.07] Keyston Weissinger, ASP in a nutshell, O’REILLY, 1999;

[3.08] Dino Esposito, ASP:NET MVC, Microsoft Press, 2010;

[3.09] Rick Strahl, A low-level Look at the ASP.NET Architecture,
http://www.west-
wind.com/presentations/howaspnetworks/howaspnetworks.asp;

[3.10] Roy T. Fielding, Richard N. Taylor, Principled Design of the
Modern Web Architecture, University of California, Irvine, 2002;

[3.11] Ahmed E. Hassan and Richard C. Holt Software Architecture Group
(SWAG), A Reference Architecture for Web Servers, Dept. of
Computer Science University of Waterloo, Ontario;

[3.12] Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel, Architecture
recovery of Apache 1.3 - A case study, Hasso Platter Institute for
Software System Engineering, Postman Germany;

[3.13] Author: Daniel A, Menascé, Presenter: Noshaba Bakht, Web Server
Software Architectures, School of Computing and Engineering
University of Missouri at Kansas City, 2004;

[3.14] http://www.dotnetfunda.com/articles/article821-beginners-guide-how-iis-
process-aspnet-request-.aspx: Beginner’s Guide:How IIS Process
ASP.NET Request:;

http://learn.iis.net/
http://hoohoo.ncsa.illinois.edu/cgi/interface.htm:l
http://www.cs.tut.fi/~jkorpela/forms/cgic.htm
http://www.west-
http://www.dotnetfunda.com/articles/article821-beginners-guide-how-iis-

Web Applications: technologies and models

- 116 -

[3.15] www.fastcgi.com, FastCGI is simple because it is actually CGI
with only a few extensions;

[3.16] Rob's Open Source '99 Presentations at O'reilly's Open Source '99
Conference in Monterey, CA;

[3.17] Pierre Delisle, Jan Luehe, Mark Roth, Java Server Pages
Specification, Version 2.1 Sun Microsystem, 2006;

[3.18] The Java EE 5 Tutorial for Java Sun System Applications
Server 9.1, Oracle, June 2010;

http://www.fastcgi.com,

Web Applications: technologies and models

- 117 -

CHAPTER 4

AJAX AND REST

4.1 INTRODUCTION
AJAX is a name applied to a set of programmatic techniques that
enable browsers to communicate asynchronously with web server.
Common uses of AJAX include retrieving content from the server to be
inserted into the current page and transmitting new or update
information to be persisted on the server. AJAX techniques make it
possible to achieve these results without causing a total refresh or
re-rendering of the current page.
Ajax incorporates several pre-existing technologies such as:
 standards-based presentation using XHTML and CSS;
 dynamic display and interaction using the Document Object

Model;
 data interchange and manipulation using XML and XSLT;
 asynchronous data retrieval using XMLHttpRequest;
 and JavaScript binding everything together.

AJAX stands for either Asynchronous Javascript And XML or
Asynchronous Javascript And XMLHttpRequest. AJAX does not
necessarily make use of XML but it almost always involves both
Javascript and the XMLHttpRequest object. Just as DHTML can be
thought of as “Javascript, CSS and HTML DOM”, AJAX can be
summarized as “DHTML and XMLHttpRequest (XHR)”.
Microsoft originally released the XHR object in 1999 with Windows IE
5 as an ActiveX object available through the use of Javascript and
VBScript. It is now supported by FireFox, Chrome, Safari, Opera by
using a native Javascript object. Although the technologies have been
in existence and used by some developers in the past, it has only
recently gained large popularity, also based on the support offered by
browsers.

Web Applications: technologies and models

- 118 -

4.2 AJAX WITH HTML HIDDEN FRAME
Before the creation of the XMLHttpRequest object by Microsoft, HTML
frames were used as a vehicle for submitting background request and
accepting responses.
This technique is based on the use of a main frame, a secondary frame
and a JavaScript code.
The main frame is responsible for the interaction with the user and for
the presentation of information.
The secondary hidden frame is used for background request and
response.
The JavaScript code in the main content frame passes information to
the JavaScript code in the hidden frame, which submits an HTTP
request. The response to this request refreshes the hidden frame,
triggering additional JavaScript code that passes information and
control back to the main content frame.
Let’s see some example just for understanding the mechanism.

Example with GET request
The web page composed by more than one frame is built using the tag
<frameset>, which includes the tag <frame> for each frame to
visualize20. Let’s see the various web pages involved in order to do a
GET request in an asynchronous way.

<html>
 <head>Ajax using hidden frame</head>
 <frameset rows=”100%, 0” style=”border:0”>
 <frame name=”mainframe” src=”main.html” noresize=”noresize” />
 <frame name=”hiddenframe” src=”about:blank” noresize=”noresize” />
 </frameset>
</html>

The attribute rows of <frameset> element contains the dimension of
each frame separated by a comma. In the previous example the
visualization frame will have all the space, while the hidden frame will
be high zero pixel.
Note the attribute noresize to prevent the user from scaling up the
frames. In this way the browsers will block the user from seeing inside
the communication frame. In the visualization frame we have linked

20 The tags <frameset> and <frame> are not longer supported in the HTML 5.

Web Applications: technologies and models

- 119 -

the file main.html while in the communication frame there is
nothing, that is about:blank. Here is the file main.html.

<html>
 <body>
 <script GetAsynData () {
 top.frames[‘hiddenFrame’].location=”data.html”;
 }
 </script>
 <form>
 <input name=”confirm” type=”button”
 Value=”Get Data” onclick=”GetAsynData();” />
 </form>
 </body>
</html>

The JavaScript function uses the top object of the browser window to
assign to the location property of hidden frame the web page to
request to the web server. When the browser locates the value of
location property, it updates the frameset loading the page
data.html, which has the following content.

<html>
 <body>
 <script>
 Window.alert(“Data received!”);
 </script>
 </body>
</html>

When the user clicks on the button Get Data the message “Data
received!” appeared on a dialog box.

Example with POST request
If we use a POST request the structure of the involved web pages is a
little bit different. We are going to implement a server functionality
which inverts a string using PHP language on the web server. The
frameset structure is equal to the example with the GET request.

<html>
 <head>Ajax using hidden frame</head>
 <frameset rows=”100%, 0” style=”border:0”>
 <frame name=”mainframe” src=”form.html” noresize=”noresize” />
 <frame name=”hiddenframe” src=”about:blank” noresize=”noresize” />
 </frameset>
</html>

Web Applications: technologies and models

- 120 -

The content of form.html is:

<html>
 <body>
 <fom action =”reverse.php” target=”hiddenFrame” method=”POST” />

<input name=”name” length=”30” />

<input name=”confirm” type=”submit” value=”Get in reverse mode” />
</form>

 </body>
</html>

In the tag <form> the target attribute contains the name of the hidden
frame to use as target. The data arrives to the web page reverse.php
which contains the server side logic of web application. Here is the
content.

<html>
 <body>
 <script>
 top.frames[‘mainFrame’].document.forms[0].name.value =
 “<?php =strrev($_POST[‘name’]); ?>”;
 </script>
 </body>
</html>

Advantages in using hidden frames
The main benefit in using hidden frames in Ajax applications is the
browser preservation of navigation history. The user can use the back
and the forward buttons as it was a normal web application or an
ordinary web site. This is very important for the web usability.

Disadvantages in using hidden frames
The main limit in using hidden frames is the impossibility to know
what happened to the HTTP request. The frame which manages the
communication with the server is unable to get information on the
stage reached by the request processing. The web application could be
“frozen” in a waiting state forever.

Web Applications: technologies and models

- 121 -

4.3 AJAX WITH HTML INTERNAL FRAME
With HTML 4.0 was introduced a new tag <iframe>21 which stays for
internal frame. This tag gives the possibility to insert a frame in a
HTML page without the necessity to define a frameset.

Example with GET request
The internal frames are managed in the same way as the hidden ones.
Here is an example.

<html>
 <body>
 <script>
 Function GetAsynData() {
 top.frames[‘internalFrame’].location = “data.html”

}
</script>

<form>
 <input name=”confirm” type=”button”
 value=”Get Data” onclick=”GetAsynData();” />

 <iframe src=”about:blank” name=”internalFrame”
 style=”display: none”></iframe>

</form>

</html>

The internal frame is present in the web page with a empty content
namely we have src=”about:blank”. Moreover the style attribute
with display: none communicates to the browser not to show the
internal frame.

Example with POST request
Using a POST request the structure of the web page is a bit different as
we can see in the following example.

<html>
 <body>

<form action=”reverse.php” target=”internalFrame”>

 <input name=”name” length=”30” />

 <input name=”confirm” type=”submit” value=”Get Data” />

 <iframe src=”about:blank” name=”internalFrame”
 style=”display: none”></iframe>

21 The tag <iframe> is still supported in HTML 5 with new attributes an with other ones no longer
supported. It creates an inline frame that contains another document.

Web Applications: technologies and models

- 122 -

</form>

 </body>
</html>

We have in the calling web page only an internal frame so the
reverse.php will be in this way.

<html>
 <body>
 <script>
 top.document.forms[0].name.value =
 “<? =strrev($_POST[‘name’]); ?>”;
 </script>
 </body>
</html>

Advantages in using internal frames
Firstly they permit to have a more flexibility as we can insert a frame
in a web page when we want and where we want.
Secondly using JavaScript we can dynamically add new sections in the
web page.

Disadvantages in using internal frames
The browsers don’t track down the internal frame so that the back and
the forward buttons on the browser don’t work on the navigation
history.

Web Applications: technologies and models

- 123 -

4.4 AJAX INTERACTION MODEL
Now we analyze the flow of interaction model from the request to the
response. The structure can be summarized in the Fig.6.1.

Figure 4.1 – AJAX Interaction Model

AJAX Engine
The XMLHttpRequest (XHR) is the core of the AJAX engine. It is the
object that enables a page to GET data from or POST data to the server
as a background request, which means that it does not refresh the
entire document in the browser window during this process.
This type of interaction model is more intuitive than the standard
HTTP request. This is because changes happen on demand when the
user makes them, and allow web applications to feel more like desktop
applications. The XMLHttpRequest eliminates the need to wait on the
server to respond with a new page for each request and allows users to
continue to interact with the page while the requests are made in the
background.

Web Applications: technologies and models

- 124 -

However, even if the data processing is in the background, the GET
and POST methods of the XHR object work the same as standard
HTTP request. Using either the POST or the GET method you can
make a request for the data from the server and receive a response in
any standardized format.

In the Fig.4.2 we can see how a (user) event is managed using the
AJAX paradigm together with the abstraction of Model-View-
Controller.

Figure 4.2 – AJAX and MVC event management.

The entire cycle of event is characterized by the following steps:

1) the user click on the button in order to get data;
2) the event is caught by the AJAX engine;
3) the AJAX engine makes a request to the appropriated server

service;
4) the server service ask for local resource and services in order to

satisfy the request;
5) the local resources and services provide the requested data to

the server service;
6) the server service make a response to the AJAX Engine;
7) the AJAX Engine shows the requested data on the browser.

Web Applications: technologies and models

- 125 -

Whereas generally a browser only allows two HTTP persistent
connections to a server at anyone time because it trying to be standard
compliant to RFC 261622, we can make many requests on this two
connections. The requests that cannot be immediately managed are
parked in an internal queue on the browser. As a consequence a user
can make many AJAX requests but they are satisfied with different
delays.

Creating the XMLHttpRequest Object and make a Request
All AJAX requests start with a client-side interaction that is typically
managed by Javascript. It creates the XHR object and makes an HTTP
request to the server.
To create the request object you must check to see if the browser uses
the XHR or the Activex object. Windows IE 5 e IE6 use ActiveX object,
whereas IE 7 and above, Mozilla FireFox, Opera, Safari and Chrome
use the native Javascript XHR object.

Function makeRequest(url, callbackMethod)
{

 If (window.XMLHttpRequest)
 {
 XHR = new XMLHttpRequest();
 }

 Else if (window.ActiveXObject)
 {
 XHR = new ActiveXObject(“Msxml2.XMLHTTP”);
 }
 Else {
 throw new Error(“Ajax is not supported by this browser.”);
 }

 sendRequest(url, callbackMethod);

}

22 The standard is RFC 2616, “Hypertext Transfer Protocol – HTTP/1.1″. Section 8.1.4, covering
“Persistent Connections / Practical Considerations”, states: “Clients that use persistent connections
SHOULD limit the number of simultaneous connections that they maintain to a given server. A
single7user client SHOULD NOT maintain more than 2 connections with any server or proxy. A
proxy SHOULD use up to 2*N connections to another server or proxy, where N is the number of
simultaneously active users. These guidelines are intended to improve HTTP response times and
avoid congestion.”

Web Applications: technologies and models

- 126 -

The object can now be used to access all the properties and methods
listed in Tables 4.1 e 4.2.

Table 4.1 – XMLHttpRequest Properties
Property Definition
onreadystatechange It is fired when the state of request object changes

and allows us to set a callback method to be
triggered. This property is fired for a total of 4
times.

readyState Returns number values that indicate the current
state of the object.

0 the object is not initialized with data;
1 the object is loading its data;
2 the object has finished loading its data;
3 the user can interact with the object even

though it is not fully loaded;
4 the object is completely initialized.

responseText String version of the response from the server.
responseXML DOM-compatible document object of the response

from the server.
status Status code of the response from the server.
statusText A status message returned as a string.

Table 4.2 – XMLHttpRequest Methods
Method Definition
Abort() Cancel the current HTTP Request.
getAllResponseHeaders() Retrieves the values of all the HTTP

headers.
getResponseHeader(“label”) Retrieve the value of a specified HTTP

header from the response body.
Open(“method”,”URL”[,asyncFlag[
,userName[,”password”]]])

Initializes a request and specifies the
method, URL, and authentication
information for the request.

Send(content) Sends an HTTP request to the server and
receives a response. It is like clicking the
submit button on a form

SetRequest(“label”,”value”) Specifies the value of an HTTP header
based on the label.

Web Applications: technologies and models

- 127 -

Function sendRequest(url, callbackMethod)
{
 XHR.onreadystatechange = function (){
 if (XHR.readyState == 4) {
 if (XHR.status >=200 && XHR.status < 300) {
 callBackMethod;
 };
 }
 };
 XHR.open(“GET”, url, true);
 XHR.send(null); // GET requests typically have no body
}

The onreadystatechange is an event handler fired only in
asynchronous mode when the state of the request object change and allow us
to set a callback method to be triggered. To this property we can assign a
reference to a function or build an anonymous function to it as in the above
example.

 // Assigning a reference to a function
 XHR.onreadystatechange = FunctionName;

 // Building an anonymous function to it
 XHR.onreadystatechange = function() { … };

The open method of XHR objects takes three parameters. The first is a string
that represents the method in which the request is to be sent. This method
can be GET, POST or PUT. The second parameter is the URL that is being
request in the form of a string, which is XML, JSON, a text file or a server-
side language that returns any of these formats. The last parameter is a
Boolean value that has a default value of true for asynchronous and false for
synchronous.
The send method is the actual method that sends the HTTP request and
receives a response in the format that you specify. This method takes one
string parameter, which can be XML or a simple key/value pair to be sent as
a POST.

An AJAX response can come in various formats such as JSON and
XML.

XML
XML is composed of custom tags called elements, which are defined in
the architecture phase of a web application. They can represent any

Web Applications: technologies and models

- 128 -

name, value or data type that will be used in your application. Here is
an example:

<?xml version=”1.0” encoding=”iso-8850-1” ?>

<categories>
 <category>Priority</category>
 <category>Object<category>
 <category>Expiry Time<category>
 <category>When<category>
 <category>Where<category>
</categories>

<row>
 <items>
 <item> <![CDATA[<u>Hight</u>]]> </item>
 <item> <![CDATA[Project Financial Plan]] > </item>
 <item> 2009-09-06 15:30:00</item>
 <item action=”alert('Meeting');” icon=”img/warn.gif”> 3</item>
 <item> Purple Room </item>
 </items>
</row>

<row>
 <items>
 <item> <![CDATA[<i>Normal</i>]] > </item>
 <item> <![CDATA[Project Management]] > </item>
 <item> 2009-10-12 10:30:00</item>
 <item action=”alert('Meeting');” icon=”img/warn.gif”>2</item>
 <item> White Room </item>
 </items>
</row>

</xml>

Let's take a look at attributes and how they help us add additional
information to your XML data.
In order to represent an expiry event we have created a group of item
that can eventually become a collection of objects when they are
parsed on client side.
The item with action attribute means that the action is triggered
starting n days before the established meeting time and the icon is
associated to the element according to the status.
There are some issues that are very important to be aware of when
using attributes. First it is non possible to have multiple values in one
attribute. Second HTML cannot be added to attributes because it will
create an invalid structure. The only way to add HTML to an XML
structure is within an element. In order to add HTML to elements so

Web Applications: technologies and models

- 129 -

that it is readable by programming language that is parsing it and does
not break the validation of the XML, we need to add CDATA tags to
the element tags. The HTML can be used to display formatted data
into a DOM element in our AJAX application front end.
Now we consider the following example:

<item> Project Financial Plan </item>

In that manner the nesting HTML tags don't work, because the parser
will see these elements as nested or child element of the parent rather
than HTML tags. While the following structure will be considered in
the right way.

<item> <![CDATA[Project Financial Plan]] > </item>

The text value Project Financial Plan will display as bold text to the
user on the document, by simply targeting an HTML tag using DOM
and appending the value with JavaScript's intrinsic innerHTML
property or using document.write().

Parsing XML
In the body section of the document we can set:

<body>

xml

json

<hr noshade=”noshade”>
<div id=”loading”></div>
<div id=”header_section”></div>
<div id=”body_section”></div>
</body>

so we can parse the response as we would like on the specific request
being made. The Response Method is:

function onXMLResponse ()
{
 if (XHR.readyState == 4)
 {

Web Applications: technologies and models

- 130 -

 var response=XHR.responseXML.documentElement;

 //Parse here

 }
}

We will start by parsing the category values from the XML file and
adding them to the body div via the innerHTML property.
In the parsing we will use the Javascript's intrinsic
getElementByTagName method. Using this method will return an
array of all elements by the name that you specify without looking at
the depth in which they reside.

// Categories
document.getElementbyId(“header_section”).innerHTML =“Agenda
”;

var categories = response.getElementByTagName('category');
for (var i=0; i<categories.length; i++)
{
 window.document.getElementById(“body_section”).innerHTML+=
 response.getElementByTagName('category')[i].firstChild.data+”</br>”;
}

// Items
var row=response.getElementByTagName('row');
for(var i=0; i<row.length; i++)
{
 var action=response.getElementByTagName('items')[i].getAttribute('action');
 var icon =response.getElementByTagName('items')[i].getAttribute('icon');

 window.document.getElementById(“body_section”).innerHTML+=
 action+”
”+icon+”
”;

 var items =response.getElementByTagName('items')[i].childNodes;
 for(var j=0; j<items.length, j++)
 {
 for(k=0; k<items[j].childNodes.length; k++)
 {
 window.document.getElementById(“body_section”).innerHTML+=
 items[j].childNodes[k].nodeValue+”
”;
 }
 }
}

Parsing JSON
JSON or Javascript Object Notation is a data-interchange format, even if
it is not a standard, it is becoming widely accepted. It is essentially an
associative array or hash table. JSON parsing is natively with
JavaScript's eval23 method, which makes it extremely simple to parse

23 The eval() function evaluates or executes an argument. If the argument is an expression, eval() evaluates
the expression. If the argument is one or more JavaScript statements, eval() executes the statements. For example
the following script

Web Applications: technologies and models

- 131 -

when using it in your AJAX application. The downfall is that the
parsing can be quite slow and insecure due to the use of the eval
method. Rogue sites can engage in JavaScript hijacking by sending
responses that contains malicious executable code in place of (or
hidden inside) JSON Data.
The structure of a JSON file is representative of a JavaScript object in
the way that one file can consist of multiple objects, arrays, strings,
numbers, and Booleans.
Here is an example of a complete JSON file:

{
 “data”:
 “categories”:
 {
 “category”: [“Priority”, “Object”, “When”, “Expiry Time”, “Where”]
 },
 “row”:
 {
 “items”:
 [
 { “action”: ”alert('Meeting');”
 “icon” : ”img/warn.gif”
 “item” : [“<u>Hight</u>”,
 “Project Financial Plan ”,
 “2009-09-06 15:30:00”,
 “3”,
 “Purple Room ”]
 },

 { “action”: ”alert('Meeting');”
 “icon” : ”img/warn.gif”
 “item” : [“<i>Normal</i>”,
 “ Project Management ”,
 “2009-10-12 10:30:00”,
 “2”,
 “White Room ”]
 },

]
 }
}

<script type="text/javascript">

eval("x=5;y=25;document.write(x*y)");
</script>

produces as output 25. Using eval() it is a very simple way to parse JSON text, here is an example

<script type="text/javascript">

var jsontext = "{a1: ‘value 1’, a2: 'value2'}";
var object = eval("(" + jsontext + ")");

</script>

Web Applications: technologies and models

- 132 -

As you can see, it is much slimmer than the XML version of the lack of
redundancy in tag names.
In order to parse the data, we will begin by creating the callback
method, checking the ready state of the request, and evaluating the
responseText.

Function onJSONResponse()
{
 if (checkReadyState(XHR,'complete') == true)
 {
 eval(“var response = (“+XHR.responseText+”)”);
 }
}

Web Applications: technologies and models

- 133 -

Let's start by targeting from the data and appending them to the body div.

// Categories
 for (var i in response.data.categories.category)
 {

 document.getElementById(“body”).innerHTML+=
 response.data.categories.category[i]+”
”;
 }

As you can see, it is very easy to target the data it is parsed into JavaScript
object. Property values are accessible by simply using dot syntax to target
them by the proper path. The we can simply do for .. in loop to target all
the property values within a specific object.

 for (var i in response.data.row.items)
 {
 for (var j in response.data.row.items[i])
 {
 document.getElementById(“body”).innerHTML+=
 response.data.row.items[i][j]+”
”;
 }
 }

4.5 EASY AJAX INTERACTIVITY WITH jQuery

Web application interactivity is enhanced by using the jQuery library
which allows to write code in a more readable way and enormously
simplifies the life to the web developer.
The jQuery function for sending AJAX request is $.ajax(). It is
called without a selector because AJAX actions are global functions
and are executed independently of the DOM.
The $.ajax() method accepts as an argument only an object
containing settings for the AJAX call. It this function is called without
any settings the method will load the current page and will do nothing
with the result.
Considering the main and more used settings, the object passed as
argument to $.ajax() has the following structure:

Web Applications: technologies and models

- 134 -

Var AJAXSettings = {};

1) AJAXSettings.data =

2) AJAXSettings.dataFilter =

3) AJAXSettings.dataType =

4) AJAXSettings.error =

5) AJAXSettings.success =

6) AJAXSettings.type =

7) AJAXSettings.url =

$.ajax(AJAXSettings);

1) the data property describes any data to be sent to the remote
script either as a query string “var1=val1&var2=val2& …”
or as JSON format ({ “var1” : “val1, “var2”: “val2”,
…}).

2) dataFilter(data, type) is a callback function that allows
to filter the data coming from the remote script. The function
takes two arguments: the raw data returned from the server, and
the dataType parameter.

3) dataType: this described the type of data expected from the
request. If this property is not specified, jQuery will try to get
the result type using the MIME type of the response. The
available types are: “xml”, “html”, “script”, “json”,
“jsonp”,, and “text”.

4) error(XMLHttpRequest, textStatus, errorThrown) is
a callback function which is execute in case of request error. The
second parameter of the function is a string describing the type
of error that occurred. The possible values for the second
argument are null, “timeout”, “error”, “notmodified”
and “parsererror”.

5) success(data, textStatus, XMLHttpRequest) is a
callback function that is executed if the request completes
successfully. The parameters of this function are: the data

Web Applications: technologies and models

- 135 -

returned from the server, formatted according to the 'dataType'
parameter; a string describing the status; and the
XMLHttpRequest object.

6) type is a string which is the type of request to send. The
possible values area GET (the default value), POST, PUT and
DELETE.

7) url is the URL to which the request is to be sent.

Let us give an example to show how is easy to use AJAX with this
method.

Var AJAXSettings = {};
AJAXSettings.type = “POST”
AJAXSettings.url = “GetData.php”;
AJAXSettings.data = “Set=Yes&Yellow=Yes&Red=No”;
AJAXSettings.success = function (data){
 $(“#ResultPanel”)

.css(“background”,”yellow”)
 .html(data);
 };
$.ajax(AJAXSettings);

4.6 Modern Web Application: REST
The advent and the diffusion of the AJAX technology have brought to
the development of a new approach to the web application design.
This new model is called REST. It stands for REpresentational State
Transfer and it comes from Roy Fielding’s PhD dissertation published
in 2000.
Fielding analyzed all networking resources and technologies available
for creating distributed applications and arrived to define the
following constraints that identify a RESTful system:

 it must be a client-server system;
 it has to be stateless: each request should be independent of

others;
 the network infrastructure should support cache at different

levels;

Web Applications: technologies and models

- 136 -

 each resource must have a unique address and a valid point of
access;

 it must support scalability.
These constraints don’t impose what kind of technology to use and,
what is more important, we can use existing networking
infrastructures such as the Web to create RESTful architectures.
Fielding defines REST in [6.5] as “a coordinated set of architectural
constraints that attempts to minimize latency and network communication
while at the same time maximizing the independence and scalability of
component implementations. REST enables the caching and reuse of
interactions, dynamic substitutability of components, and processing of
actions by intermediaries, thereby meeting the needs of an Internet-scale
distributed hypermedia system.”

4.7 REST: ARCHITECTURAL ELEMENTS
REST considers three classes of architectural elements:

 data elements;
 connecting elements (connectors);
 processing elements (components).

Data elements

 Resource: it is the key abstraction of information. Any
information that can be accessed and transferred between clients
and servers is a “resource”. A resource can change overtime
while its semantic is static. In this manner we refer to a concept
instead of a single representation, as a resource may have
multiple representations. For example, a resource that represents
a circle may accept and return a representation that specifies a
centre point and radius, formatted in SVG (Scalable Vector
Graphics), but may also accept and return a representation that
specifies any three distinct points along the curve as a
comma-separated list [6.08].

Web Applications: technologies and models

- 137 -

 Resource identifiers: they are used to distinguish between
resources. They are the only means for clients and servers to
exchange representations. In the web environment the identifier
would be an uniform Resource Identifier (URI) as defined in the
Internet RFC 2396 [6.09].

 Representation: it is what is transferred between the components.

A representation is a temporal state of the actual resource
located in some storage device at the time of the request. A
representation consist of:

 the content: a sequence of bytes;
 describing content: representation metadata;
 metadata describing metadata.

Connectors
REST uses various connector types to encapsulate the activities of
accessing resources and transferring resource representations. These
connectors could be:

 Client: sending requests and receiving responses;
 Server: listening for requests and sending responses;
 Cache: can be located at the client or server connector to save

cacheable responses, can also be shared between several clients;
 Resolver: transforms resource identifiers into network address;
 Tunnel: relays requests, any component can switch from active

behaviour to tunnel behaviour.

The connectors present an abstract interface for component
communication, enhancing simplicity and hiding the underlying
implementation of resources and communication mechanisms [6.05].
All rest interactions are stateless; as a consequence each request
contains all of the information necessary for a connector to understand
the request, independent of any requests that might have preceded it
[6.05].

Web Applications: technologies and models

- 138 -

Components
REST components are identified by their role within an application.

 User agents: uses a client connector (for example a Web Browser)
to initiate a request and becomes the ultimate recipient of the
responses.

 Origin server: uses a server connector to receive the request. It is
the definite source for representations of its resources and must
be the ultimate recipient of any request that intends to modify
the value of resource. Each origin server provides an interface to
its services and hides the resource implementation behind this
interface.

 Intermediary components: they act as both a client and a server in
order to forward with possible translation, requests and
responses. Examples of this type of components are proxy and
gateway (aka reverse proxy).

4.8 HTTP AND REST
HTTP has a special role in the Web Architecture as both the primary
application-level protocol for communication between web
components and the only protocol designed for the transfer of resource
representation [6.05]. Before describing the architectural component of
REST applied to HTTP, we start with a simple application of REST
taken from [6.06]. It is a small web service which will provide the
following functionalities:

 the user can upload a picture;
 metadata can be attached to pictures;
 pictures and attached metadata can be deleted;
 a list of pictures can be retrieved;
 picture and metadata of a picture can be retrieved.

Web Applications: technologies and models

- 139 -

Figure 4.3 – Overview of web service application.

Resources
The resources within the application are:

 Picture;
 Picture-Collection.

Representations
Each resource has associated representation:

 Picture: binary and XML;
 Picture-Collection: XML.

Addressing
The resources are addressable via URI. Only resources can be
addressed, not the representations. In fact the client use content
negotiation to determine which representation should be returned for
example text/xml or image/jpeg.

Methods
We use the following methods of HTTP:

 PUT is used to upload a new picture to the server;
 POST: is used to append more metadata to the addressed

resource;

Web Applications: technologies and models

- 140 -

 DELETE: can be use to delete a resource;
 GET: is used to retrieve a representation of a specified resource.

In general when we applied REST to HTTP we must speak of the
following concepts: nouns, verbs, adjectives, meta-data and contents.

 Nouns: In HTTP a noun is a URI. It will remain the same and be
valid for as long as the web service is on line or the context of a
resource is not changed. We use URIs to connect clients and
servers to exchange resources in the form of representation.
One practise with naming URIs is to remove
any non-essential information. We consider for example:
http://www.AExampleOfLink.com/login.aspx, the wrong
element is the aspx extension. If the web application switches to
another system for example PHP, the URI will have to be
changed as well.

 Verbs: The verb in HTTP is called method. A full list of methods
is available in section 9 of RFC 1616 [6.10]. In REST we have
constraints on how to manipulate resources. In fact we have four
specific actions that we can take upon the resources: Create,
Retrieve, Update and Delete (CRUD). A mapping of CRUD
actions to the HTTP will be:

Data action HTTP protocol equivalent
CREATE POST
RETRIEVE GET
UPDATE PUT
DELETE DELETE

 Meta-data: In HTTP there are many kinds of meta-data contained

in the request and response which could be for example the
MIME-types, what program is making the request, what
program is running on the server, if the response can be
compressed with g-zip etc…

 Content: using HTTP to communicate, we can transfer any kind
of information that can be passed between clients and servers.
For example if we request a Flash movie from YouTube, your

http://www.AExampleOfLink.com/login.aspx

Web Applications: technologies and models

- 141 -

browser receive a Flash movie. The data is streamed over
TCP/IP and the browser knows how to interpret the binary
stream because of the HTTP protocol response header Content
Type. Therefore on a RESTful system the representation of a
resource depends on the caller’s desired type (MIME type).

4.9 AJAX AND REST
Using AJAX technology and REST together we can design a new
framework in which we can take the benefits of both dynamic
interactivity provided by AJAX and modern architecture style of
REST.

Figure 4.4 – AJAX and REST Framework

The figure 4.4 shows a representation of the aforementioned
framework. The main characteristic is that the client end the server are
uncoupled. You can create the content on either side indipendently.

The client-side code can provide an infrastructure where the content
generated by the resources can be injected into the web page on the
browser. Moreover on the client-side you could make use of graphics
and innovative representations of the data generated by the resources.
In this manner we may simply implement the so-called Rich Internet
Applications.

Web Applications: technologies and models

- 142 -

On the server-side the objects could consist of flat file as well as a
database. The complexity of the object is hidden by its interface.
Focusing on the sigle object/resource for example a database, it is
easier to optimize it and to increase its access speed.

This framework has got a more important positive aspect. You can use
AJAX and REST today, that are exsisting technologies, without
throwing out old technologies and replacing them with new ones.

Web Applications: technologies and models

- 143 -

Bibliography

[4.01] Kris Hadlock, Ajax for Web Application Developers, Sams
Publishing 2007;

[4.02] http://www.w3.org/TR/XMLHttpRequest/: the XMLHttpRequest
specification defines an API that provides scripted client functionality
for transferring data between a client and a server;

[4.03] http://www.json.org: JSON (JavaScript Object Notation) is a
lightweight data-interchange format. It is easy for humans
to read and write. It is easy for machines to parse and
generate;

[4.04] Luciano Noel Castro, Web 2.0, creare siti di nuova generazione,
Sprea Editori S.p.A. 2008;

[4.05] Roy T. Fielding, Richard N. Taylor, Principled Design of the
Modern Web Architecture, ACM Transactions on Internet
Technology 2002;

[4.06] Michael Jakl, REST REpresentational State Transfer, University of
Technology Vienna;

[4.07] Alan Trick, An overview of the REST Architecture, Advanced Web
Programming, 2007;

[4.08] http://en.wikipedia.org/wiki/Representational_State_Transfer,
from Wikipedia;

[4.09] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform resource
identifiers (URI): generic syntax, Technical Report Internet RFC
2396, IETF, 1998;

[4.10] “Hypertext transfer protocol – http/1.1”, RFC 2616, IETF, 1999;

[4.11] http://jquery.com/, jQuery JavaScript library;

http://www.w3.org/TR/XMLHttpRequest/
http://www.json.org
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://jquery.com/

Web Applications: technologies and models

- 144 -

CHAPTER 5

THE MECHANISMS FOR THE SESSION CONTROL

5.1 INTRODUCTION
In this chapter we continue what was introduced in the section 1.6 and
1.7. We are going to analyze the various mechanisms used for the
management of the session state in a web application both on the
client-side and the server-side. The session state ties a sequence of
HTTP requests and responses from one browser to one or more sites.

Figure 5.1 – The interaction flow of a web application

Web Applications: technologies and models

- 145 -

In the fig. 5.1 we can see a typical work session with a web application.
that can be seen divided in four parts, in particular:

1. anonymous section: the user asks the browser to visualize the
entry page of a web application using a GET request. The related
web site sends back an anonymous session token just to register
that a user is going to enter the web application;

2. sign on session: the user sends data related his identification
generally username and password;

3. authenticated session: after the log in the session is elevated to
an authenticated session. The user is recognized by the web site
and can interact properly with the web application;

4. sign off session: the user ends the session. The browser deletes
the session token and the web server marks the session token as
expired.

5.2 CLIENT-SIDE STATE MECHANISMS
The client-side mechanisms give instruments to store information in
the web page or on the client’s computer.

Cookies
A cookie is a small amount of data stored either in a text file on the
client’s file system or in-memory in the client browser session.
It is set by the web server by using the following construct:

Set-Cookie: Name = <value>;
 Domain = <any domain-suffix of URL except a Top Level Domain>;
 Path = <path>;
 Secure = <only send over SSL>;
 Expires= <when expires>;
 HTTPOnly <when set it isn’t accessible by JavaScript on the Browser>.

Expires=<null> means the cookie is session only.
Expires=<past date> tells the browser to delete the
cookie.
Every cookie is identified by (name, domain, path) while its scope
related to a URL is given by the couple <domain, path>.

Web Applications: technologies and models

- 146 -

Figure 5.2 – The cookies of a web application

In fig. 5.2 we can see a typical use of cookie mechanism:

1. the user requests the entry page of web site using the browser;
2. the web server sends back cookies which the browser have to

remember and resend to the web server;
3. the browser sends all cookies in the URL scope.

The scope of a cookie determines the cookies to send back in a HTTP
response. In the following table we show an example.

Web page
visualized on
the browser

http://Volucer.it https://Signon.volucer.it https://card.volucer.it

Cookies sent by
the web server.

Name=anomymus
Value=44
Domain=volucer.it
Path=/

Name=signon
Value=44
Domain=signon.volucer.it
Path=/
Secure

Name=Authenticated
Value=84
Domain=card.volucer.it
Path=/
Secure

Cookies sent to
the web server

according to the
scope rules.

Name=signon
Value=44

Name=anomymus
Value=44

Name=Authenticated
Value=84

Name=anomymus
Value=44

http://Volucer.it
https://Signon.volucer.it
https://card.volucer.it

Web Applications: technologies and models

- 147 -

When the user posts the authentication codes from
https://Signon.volucer.it the browser send the cookies signon=44 and
anonymous=44 because volucer.it is a suffix of signon.volucer.it. The
secure attribute denies the sending of cookies on non-secure
communications. The scenario showed in the following table explains
better the concept.

Web page visualized on
the browser

https://Volucer.it http://Signon.volucer.it

Cookies sent by the
web server.

Name=anomymus
Value=44
Domain=volucer.it
Path=/
secure

Name=signon
Value=44
Domain=signon.volucer.it
Path=/

Cookies sent to the web
server according to the

scope rules.

Name=signon
Value=44

Even if volucer.it is a suffix of signon.volucer.it the cookie
anonymous=44 can’t be sent on a insecure communication established
on http://signon.volucer.it.

Cookies are mainly used for tracking data settings. The user cannot
accept the cookies or can delete old cookies because for example he
could consider them dangerous for his privacy. The use of cookies is
not reliable because they depend on the client settings.
In order to use cookies for transferring state information in the HTTP
messages the client and the web server have to establish an agreement.
HTTP/1.1 establishes these agreements through Set-Cookies and
Cookie.
Set-Cookie is a response header sent to the browser for setting state
information or a session identifier that references a server-side state.
Cookie is a request header transmitted by the browser in subsequent
requests to the same server.

Let’s see an example that uses cookies in PHP. We want to register the
last access to a web application in order to analyse the habits of web
site visitors to make a marketing policy.
In PHP we can set a cookie using the following syntax:

https://Signon.volucer.it
http://Signon.volucer.it
http://signon.volucer.it.

Web Applications: technologies and models

- 148 -

Int setcookie (string_name [, string value
 [, int expire
 [, string path
 [, string domain
 [, int secure]]],])

Here is the example with a single value:

<?php

 If (!isset($_COOKIE[“lastlogin”])) {
 Setcookie(“lastlogin”,time());
 $msg=”First Visit”;
 }
 Else
 {
 $lastlogin=$_COOKIE[“lastlogin”];
 $msg=“The last visit was on “;
 $msg.=date(“d/m/Y”,$lastlogin);
 $msg.=”at “+date(“H:i:s”,$lastlogin);
 }

?>
<html>
<head>
 <title>PHP cookie</title>
</head>
<body>
<?php echo $msg ?>
</body>
</html>

If we want to put in a single cookie multiple values, always using
PHP, we have to use the functions serilize() and unserilize().
Here is an example:

<?php

 // put in a array a set of values
 $PaperList[“Author”] =”Antonio Cisternino”;
 $PaperList[“Paper”][0]=”Reflection support by ”+
 “means of template metaprogramming”;
 $PaperList[“Paper”][1]=”C#: C# with ”+
 “A Customizable Code Annotation Mechanism”;
 $PaperList[“Paper”][2]=”CodeBricks:”+
 “Code Fragments as Building Blocks”;

 // compress the set of values
 $string = gzcompress(serilize($PapeList),9);

Web Applications: technologies and models

- 149 -

 Setcookie(“Card”,$string, time()+60*60*24*60), “/”);

 // check if there are cookies and show their content
 If (isset($_COOKIE[‘card’])) {
 $cookieArray= unserilize(gzuncompress($_COOKIE([‘card’]));
?>

 <pre>24
 <?php print_r($cookieArray); ?>
 </pre>

<?php
 }
?>

Another possibility is to send a series of cookie which will be read as
they will be part of an array. Here is an example:

Setcookie(‘MyCookie[Key01]’, ‘Value01’);
Setcookie(‘MyCookie[Key02]’, ‘Value02’);
Setcookie(‘MyCookie[Key03]’, ‘Value03’);

We read these cookies using a cycle:

Foreach ($_COOKIE[“MyCookie”] as $Key => $Value) {

 Echo $Key.” : “.$Value;

}

Advantages in using cookies are:
 Configurable expiration rules. cookie can expire when the browser

session ends, or it can exist indefinitely on the client computer,
subject to the expiration rules on the client.

 No server resources are required. The cookie is stored on the client
and read by the server after a post.

 Simplicity. The cookie is a lightweight, text-based structure with
simple key-value pairs.

 Data persistence. Although the durability of the cookie on a client
computer is subject to cookie expiration processes on the client
and user intervention, cookies are generally the most durable
form of data persistence on the client.

24 The <pre> tag defines preformatted text. Text in a pre element is displayed in a fixed-width font,
and it preserves both spaces and line breaks.

Web Applications: technologies and models

- 150 -

Disadvantages in using cookies are:

 Size limitations. Most browsers place a 4096-byte limit on the size
of a cookie, although support for 8192-byte cookies is becoming
more common in newer browser and client-device versions.

 Bandwidth consumption: this amount of data sent back and forth
in each request may have a negative effect on performance.

 User-configured refusal. Some users disable their browser for
client device's ability to receive cookies, thereby limiting this
functionality.

 Potential security risks. Cookies are subject to tampering. Users
can manipulate cookies on their computer, which can potentially
cause a security risk or cause the application that is dependent
on the cookie to fail. Moreover hackers have historically found
ways to access cookies from other domains on a user's computer
although cookies are only accessible by the domain that sent
them to the client. Another security risk in using cookies is
sniffing attack as they are sent repeatedly on each request to the
server. However this problem can be faced with using the
HTTPS protocol.

 Server is blind: the server knows about a cookie only name=value.
It doesn’t see if the cookie is secure , HttpOnly or its domain.

Cookies are often used for personalization, where content is
customized for a known user. In most of these cases, identification is the
issue rather than authentication. Thus, you can typically secure a cookie
that is used for identification by storing the user name, account name,
or a unique user ID (such as a GUID) in the cookie and then using the
cookie to access the user personalization infrastructure of a site.

Hidden field
Hidden fields are HTML input controls with hidden type that store
data in the HTML page. Hidden fields are not displayed on the web
browser, but if you view source, you can see both the hidden field and

Web Applications: technologies and models

- 151 -

its value. They do allow you to post information to other pages, or
back to the same page.

An example for a hidden field can look like this:

<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />

ASP.NET allows you to store information in a HiddenField control,
which renders as a standard HTML hidden field. A HiddenField
control stores a single variable in its Value property and must be
explicitly added to the page. The following examples show a
HiddenField control with an initial value.

HTML example:

<input type="hidden"
 id="SessionID" name="SessionID"
 value="MyPersonalNumber" />

ASP.NET example:
<asp:hiddenfield id="ExampleHiddenField"
 value="Example Value"
 runat="server"/>

Advantages in using hidden fields are:

 No server resources are required: the hidden field is stored and
read from the page.

 Widespread support: Almost all browsers and client devices
support forms with hidden fields.

 Simple implementation: Hidden fields are standard HTML
controls that require no complex programming logic.

The disadvantages of hidden fields are:

 Increases the HTML size of the page.
 You still cannot store structured data.
 Because you can view source of an HTML page, there is no

security. The hidden field can be tampered with.
 There is no way to persist the data.

Web Applications: technologies and models

- 152 -

ViewState
Each control on a Web form page, including the page itself, has a
ViewState property, it is a built-in structure for automatic retention of
page and control state, which means you don’t need to do anything
about getting back the data of controls after posting page to the server.
In ASP.NET and C# language, here is an example of using the
mechanism of ViewState25 property to save information between
round trips to the server.

// To save information
 ViewState.Add(“shape”, “circle”);

// To retrieve information
 String Shapes=ViewState[“shape”];

The ViewState property maintains ViewState information using
key/value pairs. Unlike Hidden field, the values in ViewState are
invisible when “view source”, they are compressed and encoded.

But ViewState has one major drawback. ViewState property can be
disabled. In ASP.NET 1.x, Custom controls had only option of using
ViewState to store critical information across postbacks. But a
developer using custom controls can disable ViewState which can
ultimately break the control. To fix this, ASP.NET 2.0 has introduced a
new kind of ViewState called ControlState which is essentially a private
ViewState for your control only, and it is not affected when ViewState is
turned off. You should only store data in the ControlState collection
that is absolutely critical to the functioning of the control. Heavy usage
of ControlState can impact the performance of application because it
involves serialization and deserialization for its functioning.

25 Microsoft ASP.NET Web Forms pages are capable of maintaining their own state across multiple client round trips. When a
property is set for a control, the ASP.NET saves the property value as part of the control's state. To the application, this makes it
appear that the page's lifetime spans multiple client requests. This page-level state is known as the view state of the page. In Web
Forms pages, their view state is sent by the server as a hidden variable in a form, as part of every response to the client, and is
returned to the server by the client as part of a postback. Normally, the view state is a hashed string encoded as Base64 and stored
in a hidden field called __VIEWSTATE. In this way, the view state is not cached on the client, but simply transported back and forth
with potential issues both for security and performance. Since its performance overhead, you need to decide properly when and
where you should use viewstate in your webform.

Web Applications: technologies and models

- 153 -

Advantages in using view state are:

 No server resources are required. The view state is contained in a
structure within the page code.

 Simple implementation. View state does not require any custom
programming to use. It is on by default to maintain state data on
controls.

 Enhanced security features. The values in view state are hashed,
compressed, and encoded for Unicode implementations, which
provides more security than using hidden fields.

Disadvantages in using view state are:

 Performance considerations. Because the view state is stored in the
page itself, storing large values can cause the page to slow down
when users display it and when they post it. This is especially
relevant for mobile devices, where bandwidth and processing
are often a limitation.

 Device limitations. Mobile devices might not have the memory
capacity to store a large amount of view-state data.

 Potential security risks. The view state is stored in one or more
hidden fields on the page. Although view state stores data in a
hashed format, it can still be tampered with.

Query Strings
Query strings provide a simple but limited way of maintaining some
state information. You can easily pass information from one page to
another. But most browsers and client devices impose a 255-character
limit on the length of the URL. In addition, the query values are
exposed to the Internet via the URL so in some cases security may be
an issue.

Here is an example, in ASP.NET and C# language:

http://www.example/GetCard.aspx?Category=service&ProductID=25

http://www.example/GetCard.aspx

Web Applications: technologies and models

- 154 -

When GetCard.aspx is being requested, the Category and the
ProductID can be obtained by using the following codes:

string Category;
int ProductID;
Category = Request.Params[“Category”];
ProductID = int.Parse(Request.Params[“ProductID”]);

5.3 SERVER-SIDE STATE MECHANISMS
With the server-side state mechanisms Information will be stored on
the server. It has higher security even if it can use more web server
resources.

Application Object
The Application object provides a mechanism for storing data that is
accessible to all code running within the web application. The
application state variables are shared by multiple sessions, for this
reason you need Lock and Unlock pair to avoid having conflicts.
In ASP.NET and C# language, here is an example of using this
mechanism.

Application.Lock();
Application[“ClientNumber”]=Application[“ClientNumber”]+1;
Application.Unlock();

Advantages in using application state are:

 Simple implementation. Application state is easy to use, familiar to
ASP developers, and consistent with other .NET Framework
classes.

 Application scope. Because application state is accessible to all
pages in an application, storing information in application state
can mean keeping only a single copy of the information (for
instance, as opposed to keeping copies of information in session
state or in individual pages).

Disadvantages in using application state are:

Web Applications: technologies and models

- 155 -

 Application scope. The scope of application state can also be a
disadvantage. Variables stored in application state are global
only to the particular process the application is running in, and
each application process can have different values. Therefore,
you cannot rely on application state to store unique values or
update global counters in Web-garden and Web-farm server
configurations.

 Limited durability of data. Because global data that is stored in
application state is volatile, it will be lost if the Web server
process containing it is destroyed, such as from a server crash,
upgrade, or shutdown.

 Resource requirements. Application state requires server memory,
which can affect the performance of the server as well as the
scalability of the application.

Session Object
Session object can be used for storing session-specific information that
needs to be maintained between server round trips and between
requests for pages. Every client generates a different session object.
Each session is identified by a unique SESSION ID sent forward and
back in the request-response round trip.

In ASP.NET each active session is identified and tracked using a 120bit
SessionID string. Its values are generated using an algorithm that
guarantees uniqueness. SessionIDs are communicated across client-
server requests. In ASP.NET and C# language, here is an example of
using this mechanism.

// to store information
Session[“CurrentCardNumber”]=”2505”;

// to retrieve information
CurrentCardNumber= Session[“CurrentCardNumber”];

In PHP from the version 4 and later, the sessions are managed using
the following commands.

Web Applications: technologies and models

- 156 -

<?php

 // Create a session
 session_start();

 // Set session variables that are element of the array $_SESSION
 $_SESSION[“CurrentCardNumber”]=”2505”;

 // Get a value from a session variable
 Echo $_SESSION[“CurrentCardNumber”];
?>

<?php

 // To destroy a session in a logout web page

 //Unset all of the session variables.
 $_SESSION = array();

// Finally, destroy the session.
 Session_destroy();

?>

Advantages in using session state are:
 Simple implementation. The session-state facilities are easy to use

because they are built-in mechanisms of the related web server
technology.

 Session-specific events. Session management events can be raised
and used by your application.

 Data persistence. Data placed in session-state variables can be
preserved. For example if Internet Information Services (IIS)
restarts and worker-process restarts the session data are not lost
because the data is stored in another process space.
Additionally, session-state data can be persisted across multiple
processes, such as in a Web farm or a Web garden.

 Platform scalability. Session state can be used in both multi-
computer and multi-process configurations, therefore
optimizing scalability scenarios.

 Cookieless support. Session state works with browsers that do not
support HTTP cookies, although session state is most commonly
used with cookies to provide user identification facilities to a
Web application. Using session state without cookies, however,

Web Applications: technologies and models

- 157 -

requires that the session identifier would be placed in the query
string or a hidden field.

 Extensibility. You can customize and extend session state by
writing your own session-state provider. Session state data can
then be stored in a custom data format in a variety of data
storage mechanisms, such as a database, an XML file, or even to
a Web service.

Disadvantages in using session state are:

 Performance considerations. Session-state variables stay in
memory until they are either removed or replaced. Since
Session-state variables could contain blocks of information, such
as large datasets, they can affect Web-server performance as
server load increases.

File/Database
Files can store a lot of information related to the state of a web
application. The only drawback is their handling which can be made
only using the functionalities offered by the file system of the web
server. Database also enables you to store large amount of information
to maintain the state in your web application. The databases allow to
handle information stored as data by using their exposed interface.
Users can query the database by using the unique Session ID, also you
can save it in the database for using across multiple HTTP request in
your site.

Web Applications: technologies and models

- 158 -

Bibliography

[5.01] Leon Shklar, Rich Rosen, Web Application Architecture: Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[5.02] www.w3schools.com, an Internet Developers Portal from 1998;

[5.03] Jessica Chen, Xiaoshan Zhao, Formal Models for Web Navigations with
Session Control and Browser Cache, School of Computer Science,
university of Winsdo. Canada, 2004;

[5.04] RFC2965, HTTP State Mechanisms, 2000;

[5.05] Dan Boneh, Web Security: Session Management, Stanford Advanced
Computer Certificate: Exploiting and Protecting Web Applications
(XACS122), 2013;

http://www.w3schools.com

Web Applications: technologies and models

- 159 -

CHAPTER 6

WEB APPLICATION STATE MANAGEMENT

6.1 INTRODUCTION
One of the major advantages of web applications, compared to the
conventional client-server applications, is that the user does not need
to install a special program for each application he likes to use. The
only client application the user needs is a web browser. Moreover,
web applications are easy to deploy because they just have to be
installed on a single server.
While the asymmetric design of the HTTP protocol and the fact that it
is stateless, it is one of the major difficulties of a web application. The
server is unable to send updates to the client and has to wait for
incoming requests.
Another problem is the flow control of the web applications. The web
server is unable to control the navigation facilities provided by the
web browser, like the back, forward and refresh buttons or the
capability to open a new window on the same page. This happens
because the user can interact not only with the web pages but also with
the web browser itself. These navigation facilities lead to
synchronization problems between the state of the server and its
clients.
For example, if we are filling in an order form, we can clone the
window or we can use the back button or we can submit the form a
second time. This means that the server has to deal with several type
of request at the same time and all related in somehow to the same
work session.
Then, a web application is not able to recognize whether this request is
somehow related to previous requests or not, because, as we have
already said, HTTP is a stateless protocol. As a consequence a web
application is not able to relate the request to a session that tells the
application, for example, what items are in a user’s shopping basket.

Web Applications: technologies and models

- 160 -

The combination of technical mechanisms for solving these problems
is usually called session management. Even if these mechanisms have
been described in the previous chapter, we now pay attention on
several questions related to the session control. These questions are:

 How do we identify what session an incoming request belongs
to?

 If the request belongs to the session, does it respect the control
flow diagram of web application?

 Where and how do we store the session state?

 How do we protect the mechanisms from attacks like stealing
and tampering?

We will try to answer these questions by presenting a design pattern
related to the session state handling.
Before diving into it, to better understand what we are going to
describe, we now classify the various types of state in base of its
nature. We generally have three type of session state linked to the life
spans of context information representing it.

Short time state: a typical scenario in which some information only
needs to be kept for a short period of time, it is when user name and
password have entered into a registration form to authenticate the
user. Such information does not need to persist across browser
sessions.

Medium term state: an example of this type of state is the contents of a
shopping cart during an e-commerce transaction. After the completion
of the checkout stage, the context information of the Shopping Cart is
not longer relevant.

Long term state: this scenario implies that the information should be
accumulated over repeated interactions with the web application e.g.
Gmail

Web Applications: technologies and models

- 161 -

In the next sections we will examine a pattern to try to provide same
methodology approach to the development of a web application also
considering the technology and the frameworks on the scene today.

6.2 SCHEMA OF A SESSION MANAGEMENT
In this schema we analyse the session management in a web
application considering some crucial aspects related to the security.
We can consider a session in web application divided in three phases:

1. Authentication phase;
2. Working phase;
3. Closing phase.

Authentication phase

Figure 6.2 – Authentication phase.

In this phase the user asks the browser to visualize the authentication
form of a web application. At this time the user is anonymous to web
application which only knows that another user is going to
authenticate.
Then the user starts the authentication procedure using one o more of
three types of methods:

a. Something you know e.g. password;
b. Something you have: e.g. OTP Cards ;

Web Applications: technologies and models

- 162 -

c. Something you are: e.g. biometric authentication: palm, iris,
retinal scan.

The user sends his data to the Authentication Process on the web
server.
If the data are valid the web application releases a Session Token to the
user which means: “you are a valid user I recognize you this is your token
to work with me and this token identifies you”

This is a classical client authentication in which the web application on
server verifies the user identity. The user doesn’t verify if it is talking
to the right “person” on the web server because it doesn’t tell anything
about itself. It sends me back just a “token”
To sum up we don’t have a mutual authentication which involves the
user and the server verifying each other’s identity.
Certificate???

During the authentication process of the user we have to be careful to
avoid session hijacking. After user authentication an attacker can steal
the session token and hijack the session issuing requests on behalf of
user.
To mitigate the session token theft occurs:

a) Login over HTTPS;
b) The web site doesn’t have mixed HTTPS/HTTP pages in order to

avoid man-in-the-middle attack. I remember HTTP transports
clear text in its request;

c) The session token must be unpredictable to the attacker. If he
can guess it the hijacking is simple. To avoid it we can use the
following schema to generate a session token:
One-Way-Hash-Function 26(Current Time,. Random Nonce);

26 The one-way hash algorithm is a mathematical function coded into an algorithm that takes a variable length
string and generates a fixed length string or hash value known as “message digest” or "fingerprint". When a one-way
hashing algorithm is used to generate the message digest the input cannot be determined from the output. So it is
computationally infeasible to produce two messages having the same message digest, or to produce any message
having a given pre-specified target message digest. The most widely known hash algorithms are SHA-1 and MD5.
The Secure Hash Algorithm (SHA) was developed by NIST and is specified in the Secure Hash Standard (SHS,
FIPS 180). SHA-1 is a revision to this version and was published in 1994. It is also described in the ANSI X9.30 (part
2) standard. SHA-1 produces a 160-bit (20 byte) message digest. Although slower than MD5, this larger digest size
makes it stronger against brute force attacks. MD5 was developed by Professor Ronald L. Rivest in 1994. Its 128 bit
(16 byte) message digest makes it a faster implementation than SHA-1.

Web Applications: technologies and models

- 163 -

d) after authentication the web application on the web server must
always issue a new unpredictable session token.

Working phase
In this phase user works with a logged-in session. He interacts with
web application sending data and receiving data. These data are
connected using the session token.

Figure 6.3 – Working phase.

To avoid eavesdropping and tampering the requests and the responses
have to use an HTTPS connection.

Closing phase
When we want to end the work session we have to tell the web
application by clicking on the End Session link.
The logout process entails:

1. deletion of the session token from the browser;
2. marking as expired of the related session information on the

web server.

Web Applications: technologies and models

- 164 -

Figure 6.4 – Closing phase.

6.3 SESSION TOKEN
In a web application the session token plays a fundamental role. It is a
piece of information that:

a) identifies the user;
b) connects a request or a response to him;
c) connects a request or a response to the session information

stored on the web server.

We have the following several options where to store it:

1. Browser cookie;
2. In all URL Links;
3. In a hidden form field.

Session Token stored in a browser cookie

The advantages to store the session token in a cookie are:

 Cookie automatic mechanism: the browser automatically sends
the cookie value with each request to the application. The web
application does not need to include the identifier in all links or
forms as it would be necessary for URL or form-based

Web Applications: technologies and models

- 165 -

mechanisms. Cookies even work when parts of the application
consist of static HTML pages.

 Session over multiple browser windows: Session identifier
changes work over multiple browser windows. When the
application changes the session identifier, the new identifier is
automatically available to all open browser windows within the
same process.

The disadvantages to store the session token in a cookie are:

 Cookie limitation: there is a limit on the number and size of
cookies that can be set. A browser can keep only the last 20
cookies sent from a particular domain, and the values that a
cookie can hold are limited in size to 4KB.

 Vulnerable to CSRF27: The fact that the cookie with the session

identifier is sent automatically with each request to the
application makes this mechanism vulnerable to CSRF attacks
from external sites. Malicious sites can include references to the
web application for example in an image tag that does not point
to an image but to an URL of the attacking web application. The
victim’s browser will issue this request to the attacking web
application. If the user is currently logged on and authenticated
to the application, the browser will send the user’s valid session
identifier along with this request. With the authenticated
request, the attacker can perform application actions on behalf of
his victim.

 Vulnerable to XSS28: The cookie is vulnerable to session
identifier theft via XSS as it can be accessed via JavaScript
injected into the web pages viewed by the users.

27 Tricking the client browser into triggering actions within a valid session is called Cross-Site Request
Forgery (CSRF/XSRF) also known as Session Riding. Such attacks are especially dangerous if a session is
authenticated.
28 With Cross-Site Scripting (XSS), an attacker injects script code (usually JavaScript) into web content
delivered by the web application. This is done by exploiting insufficient output filtering in the application.

Web Applications: technologies and models

- 166 -

Session Token stored in URL link

The advantages to store the session token in URL links are:

 Immune to CSRF: Such attacks, leveraged through external

websites, do not work because the attacker does not know the
session identifier and, the browser of the potential victim does
not send it automatically.

 User Agent independent: The mechanism is independent of
browser settings. Passing parameters along with URLs is a
feature that is always supported by all browsers.

The disadvantages to store the session token in URL links are:

 Referer leaks URL session token: the HTTP Referer header

shows the session token which is part of URL string to 3rd
parties.

 Session ID is easy to manipulate: The session identifier in the
URL is visible. It appears in log files of proxy and web servers as
well as in the browser history and bookmarks. Moreover, users
might copy the URL including the identifier and mail it to others
while they are still logged in. This practice is not unusual and
will often allow unauthorized access to the application.

 Vulnerable to XSS: This pattern is vulnerable to session

identifier theft through XSS. The identifier is included in every
link within the web application. Thus, it is also accessible by
injected scripts.

It must be noted, however, that the problem of URL parameters
appearing in proxy log files and in the header can be solved by using

Web Applications: technologies and models

- 167 -

SSL connections for all requests. When using SSL, the proxy can only
see the encrypted data.

Session Token stored in hidden form field

The advantages to store the session token in hidden form fields are:

 Hidden Session-ID: In contrast to get request parameters,

hidden form fields are transmitted in the request body and do
not appear in proxy logs or in the headers. Moreover, users
cannot accidentally copy them to mail.

 Immune to CSRF: The mechanism is immune to CSRF attacks

that are leveraged through external websites. Such attacks do
not work because the attacker does not know the session
identifier and the browser of the potential victim will not send it
automatically.

 User Agent independent: The mechanism is independent of

browser settings. Hidden form fields are always available and,
unlike from cookies, they cannot be turned off by the user.

The disadvantages to store the session token in hidden form fields are:

 Vulnerable to XSS: As the session identifier appears in the
HTML page, the mechanism is vulnerable to session identifier
theft via XSS.

 Doesn’t work with static page: The identifier must be explicitly
included in each form. So, the mechanism does not work with
static pages within the application. In fact the hidden form fields
only work with HTTP post requests and they don’t work with
HTTP get requests.

Web Applications: technologies and models

- 168 -

 Embedded objects without authentication: All embedded
objects like images, frames, and iframes cannot be included with
post requests. The resources that are referenced in HTML
documents for example within the tags “img”, “iframe”, etc. are
always retrieved by the browser via HTTP get requests. The
only alternative to face this problem is to include these objects
without any session information, which also means that these
objects are accessible without authentication. Otherwise we can
resort to mechanisms like session identifier in URL parameters
for these GET requests.

 Limited hidden field life: while cookies can persist across
multiple sessions, hidden fields cannot last beyond a certain
interactive session.

6.4 WHERE TO STORE THE SESSION TOKEN
The best solution in storing the session token is to use a combination of
these mechanisms:

1) URL Parameter;
2) Cookie;
3) Hidden field.

In this way we can increase the robustness of web application and we
make more difficult for an attacker to hijack a work session. The
drawbacks of this are a processing overhead and an increase in the
code complexity.

Web Applications: technologies and models

- 169 -

Bibliography

[6.01] RFC2965, HTTP State Mechanisms, 2000;

[6.02] Leon Shklar, Rich Rosen, Web Application Architecture: Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[6.03] Jessica Chen, Xiaoshan Zhao, Formal Models for Web Navigations with
Session Control and Browser Cache, School of Computer Science,
university of Winsdo. Canada, 2004;

[6.04] Dan Boneh, Web Security: Session Management, Stanford Advanced
Computer Certificate: Exploiting and Protecting Web Applications
(XACS122), 2013;

Web Applications: technologies and models

- 170 -

CHAPTER 7

SHOPPING CART WEB APPLICATION

7.1 INTRODUCTION
We are going to examine the Shopping Cart or Shopping Basket
metaphor used on most e-commerce web sites. We have chosen this
well-known paradigm for analysing the problem of session control in a
web application, because we think that maintaining the session state
when users purchase products on an e-commerce web site it’s a good
example of “medium term state”.

In a Shopping Cart web application users should be able to:

 select an item, select a quantity, as it is added to a cart;
 view the contents of the cart at any time, including the current

total, and also be able to modify it from that view: add, remove
items, as well as change quantities;

 check out completing the purchase.

We will describe and develop a simplified Shopping Cart Application
in which we would like to sell Technical Paper. For this reason, we
called the site “Paper Shopping Store”.

In the back-end we have a Data Base with a simple conceptual schema
as shown in figure 7.1.

Web Applications: technologies and models

- 171 -

Figure 7.1 - Conceptual Schema of Shopping Cart Web Application Data Base

The data base logical schema related to the relational database is the
following:

Entity Name Paper

Table Name PSTORE
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
PAPER_IDE N(10) yes
PAPER_TITLE C(100)
ABSTRACT C(254)
PRICE In Euro N(8,2)

Entity Name Cart

Table Name CART
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
CART_IDE N(10) yes
NAME C(100)
TOTAL In Euro N(8,2)

Entity Name Cart Item

Table Name CITEM
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
CART_RIF N(10) Yes CART_IDE CART
PAPER_RIF N(10) Yes PAPER_IDE PSTORE

Web Applications: technologies and models

- 172 -

7.2 SHOPPING CART

In this section we are going to use the Microsoft ASP mechanisms for
the web application sessions of a Shopping Cart e-commerce. The
information context is split into Session ID to be shared with the user
agent and the Session Information on the memory of the web server. On
the server side we have used the Session Object, while on the client
side the automatic cookie mechanism.
How we will see the design and the code is simple, because all the
work is done by the ASP integrated mechanisms.

Moreover this is a typical situation in which the client synchronizes the
state of the web application that is represented by the Session
Information on the web server, using the couple (Session ID, Data
changed/inserted by the user).

During the interaction between the user and the web application the
state of the web application could be in one of the following stages:

a) the state of the web application is consistent. In other words
what is represented on the browser is completely synchronized
with what is present on the web server. This generally happens
after the user agent sends an update request to the web server;

b) the state stored on the web server doesn’t represent what is
showed on the browser. This generally happens just before the
user agent sends an update request to the web server on user
request or automatically.

Z+++
The latency of the request-response round trip influences the level of
interaction of the web application with the user, and only when we
receive back a good response we are sure that the state of web
application is successfully updated.

Before going through the details of Shopping Cart implementation, it
is important to go over again the mechanisms used by ASP technology
in the management of session control.

Web Applications: technologies and models

- 173 -

In ASP a session starts when:

 A new user requests an ASP file, and the Global.asa file includes
a Session_OnStart procedure;

 A value is stored in a Session variable;
 A user requests an ASP file, and the Global.asa file uses the

<object> tag to instantiate an object with session scope.

When a session starts for a given visitor, an ASP session ID is
automatically created by the web server ASP, which is a unique
identifier. This Session ID is a property of the Session Object and it is
rightly called SessionID. In the example below, we store the user's
SessionID into a variable.

<%
Dim mySessionID
mySessionID = Session.SessionID

%>

The Session ID will be sent to the browser as cookie in the HTTP
response. Then the browser will remember this ID, and will send this
ID back to the server in the subsequent requests. When the server
receives a request with session ID, it knows this is a continuation of an
existing session.

Moreover this unique Session ID generated by the web server is used
by the web server itself to distinguish the variables related to a session
rather than to another session.

When the server receives a request from a browser on a new host
(request without a session ID), the server not only creates a new
session ID, it also creates a new Session object associated with the
session ID.

A Session object is provided by the server to hold information and
methods common to all ASP pages running under one session. The
main characteristics of the Session object are:

 Contents: A collection of objects acting as a cache for different
ASP pages to share information. Since "Contents" is the default

Web Applications: technologies and models

- 174 -

collection, we write 'session("myVar")' instead of
'session.Contents("myVar")'.

 Abandon(): A method to destroy the current session.
 SessionID: A read only property to return the id of the current

session.
 TimeOut: A property to set timeout period on this session.
 OnStart(): An event handler to be called when the first HTTP

request comes from a new user.
 OnEnd(): An event handler to be called when the session is

abandoned or timed out.

You will also get an invalid session error, if the browser send a request
with a session ID associated with a session which has been terminated
by a ASP page with Session.Abandon() method or when a user has not
requested or refreshed a page of the web application for a specified
period. By default, this is 20 minutes.

Now we dive into the description of the example realized on a web
server that supports ASP. It can be seen at the URL:

http://www.coronarie.it/Store.asp.

For simplicity we don’t use any database to store the Shopping Cart
and it is only composed by two ASP files:

 Store.asp;
 ShoppingCart.asp.

We start with the global.asa file. This is a special file in which I have
prepared the start of a session with the following code:

<SCRIPT LANGUAGE= "VBScript" RUNAT="Server" >

'-- Area Shopping Cart
Session("CartID") = 0
Session("CartItem01")= 0
Session("CartItem02")= 0
Session("CartItem03")= 0
Session("CartItem04")= 0

 …
 End Sub
</SCRIPT>

http://www.coronarie.it/Store.asp.

Web Applications: technologies and models

- 175 -

When a user access for the first time the Shopping Cart is empty, in
this case always for simplicity we have a cart with a maximum of four
Papers. Session(“CartID”) variable session is used for identifying in a
unique way the Cart that practically corresponds to the Session ID.

Fig. 7.2 – the initial web page Store.asp of Shopping Cart example.

In the example, as we can see in the figure 7.2 on the top right side, the
Session ID is shown just for didactical purpose.

Web Applications: technologies and models

- 176 -

Now we are going to analyse the most important code blocks in the
ASP files of the example. In Store.asp we firstly check if an item is
selected and then we manage it with the following ASP code block:

<%

'- Get the Paper Ide
Dim SelectedItem
SelectedItem = cInt(Request.QueryString("sitem"))

'- Get the Requested User Action

Dim SelectedAction
SelectedAction = cInt(Request.QueryString("saction"))

'- Add Item To the Current Cart

If Not (SelectedItem = "" Or IsNull(SelectedItem)) Then

‘- Add Paper to the Shopping Cart
 If (SelectedAction = 0) Then

For j=1 to 4
 Select Case J

 Case 1
If (Session("CartItem01") = 0) Then
 Session("CartItem01") = SelectedItem
 Exit For
End If

…

 Case 4
If Session("CartItem04") = 0) Then
 Session("CartItem04") = SelectedItem
 Exit For
End If

 End Select
Next

 End if

‘- Remove paper from the Shopping Cart
 If (SelectedAction = 1) Then

 For j=1 to 10
 Select Case J
 Case 1
 If (cInt(Session("CartItem01"))=cInt(SelectedItem)) Then
 Session("CartItem01") = 0
 Exit For

 End If

 …

 Case 04
 If (cInt(Session("CartItem04"))=cInt(SelectedItem)) Then
 Session("CartItem04") = 0
 Exit For

 End If
 End Select
 Next

 End if

‘- A Paper is empty
 If (SelectedAction = 2) Then

 Session("CartItem01") = 0
 Session("CartItem02") = 0
 Session("CartItem03") = 0
 Session("CartItem04") = 0
 …
 End If
 End If
%>

Web Applications: technologies and models

- 177 -

After clicking on one of the “Add to Cart“ buttons on the browser
window we can see what is shown in figure 7.3. The image button
with the “red basket” on the right of the selected item gives the
possibility of removing it from the basket.

Fig. 7.3 – After having added an item to the Shopping Cart.

Web Applications: technologies and models

- 178 -

When the user adds a new paper to the Shopping Cart, a request
of GET type is done to the web server using the QueryString. The
related HTML code is:

That request is managed by the following ASP code:

Adding a new item to the Shopping Cart

If IsAddedToCart = True Then

 Response.Write("” & _
 “")
 Response.Write("

")

 Response.Write("<a href='Store.asp?sitem=" & _
 objRs.fields("paper_ide").value & "&saction=1'")
 Response.Write(">")
 Response.Write("<img border='0' src='img/Remove.png' “ & _
 “alt='Remove Added Item' />")
 Response.Write(""

Else

 Response.Write("<a href='Store.asp?sitem=" & _
 objRs.fields("paper_ide").value & "&saction=0'")
 Response.Write(">")
 Response.Write("")
 Response.Write("")

End If

Web Applications: technologies and models

- 179 -

7.3 SHOPPING CART WITH ROBUST SESSION

In this section we are going to show a robust session implementation
of a Shopping Cart e-commerce site. The information context is split
into Session ID, to be shared with the user agent, and the Session
Information on the memory of the web server. The web application
sessions are entirely managed by PHP code that interacts with a
MySQL database which physically implements the following logical
schema.
The new database logical schema based on the conceptual schema,
already shown in section 7.1, is the following.

Entity Name Paper Store

Table Name PSTORE
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
PAPER_IDE N(10) yes
PAPER_TITLE C(100)
ABSTRACT C(254)
PRICE In Euro N(8,2)

Entity Name Cart

Table Name CART
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
CART_IDE N(10) yes
NAME C(100)
AUSER Authenticated User C(040)
WHEN Time Stamp DateTime
TOTAL In Euro N(8,2)

Entity Name Cart Item

Table Name CITEM
Attribute Name Type Null P.K. Referential Integrity

 Attribute Table/Array Del R.C.
CART_RIF N(10) Yes CART_IDE CART
PAPER_RIF N(10) Yes PAPER_IDE PSTORE

As we can see respect to the previous one we have added to the Cart
table the attribute related to the Authenticated User and the attribute

Web Applications: technologies and models

- 180 -

Time Stamp. The first one is used to assure that who is interacting is an
authorized user, the second one is necessary to implement a robust
web application. The Session information is stored in the database,
because in case of:

 user agent crash
 or web server failure,

user can re-authenticated himself and asks the web server to continue
the last session.
The implementation only regards the phase of selection of a paper and
of putting it in the shopping cart. It was chosen because it is the most
meaningful in the management of the state of the web application.

Figure 7.4 – Shopping Cart in the Robust Session Split Context.

As we can see in the figure 7.4 above the Session ID is shown for
didactical purpose only. The state of the web application (Session ID,

Web Applications: technologies and models

- 181 -

Session Information) is completely managed by the code without using
environment mechanisms such as cookies.
Even if this methodology has some drawbacks and it relies on
developer skill, it seems a good compromise in order to get robust and
independent web application.

The implemented example is composed of two file:

 the main file RPStore.php;
 and a file only containing PHP code CartManager.php used as

include file in the main file RPStore.php.

The example may be seen at the following URL:

http://www.volucer.it/ShoCRP/RPStore.php.

In the figure 7.5 it is shown the CartManager.php initial code list. This
PHP file checks if a session is already open when a user logs in,
otherwise it will open a new one. As we can see, the SessionID is
dynamically generated by the MySQL primary key mechanisms after
the SQL INSERT command and memorized in the $MyCartID
variable.
The security concerns are not included in the example, in order to pay
more attention to the session management.

http://www.volucer.it/ShoCRP/RPStore.php

Web Applications: technologies and models

- 182 -

Figure 7.5 – CartManager.php.

Web Applications: technologies and models

- 183 -

Bibliography

[7.01] Peter B. MacIntyre, PHP The Good Parts, O’Reilly Media, 2010;

[7.02] RFC2965, HTTP State Mechanisms, 2000;

[7.03] Leon Shklar, Rich Rosen, Web Application Architecture:Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[7.04] David Lane, Hugh E. Williams, Web Database Applications with PHP &
MySQL, O’Reilly, 2002;

Web Applications: technologies and models

- 184 -

CHAPTER 8

CONCLUSIONS

This thesis has been a review of most of the basic technologies behind
the development of a web application. The survey is not exhaustive
but it gives an outlook of all actors involved in a web application
development. In the first chapters we have analyzed:

 web document: it is what the user views on the browser and with
which a user interacts when he is using a web application;

 HTTP protocol: it is fundamental for the communication between
the browser and the web server.

 web browser: it represents the client part of a web application;

 web server: it is the more complex and active part of a web
application.

After that we have examined the technologies AJAX and REST, which
have produced a paradigm shift in the web application design.

Then the rest part of the thesis has been dedicated to the state problem
handling in a web application. This is a very important aspect because
without a state it is not possible to link together a set of web pages. In
fact to face this problem many mechanisms are provided by the
environment development. To face with the stateless nature of HTTP
protocol, we have seen that the web developer has to do more work to
provide a better and safer solution.

The choice of the best-fit approach in the development of a web
application is not a simple job. To help in doing this, we give an
excursus on how the development of a web application has been
evolved and has been changed from the start to today.

Web Applications: technologies and models

- 185 -

To better understand what we are going to describe, we model a web
application as a double track state automaton: the client track and the
server track. The model is shown in figure 10.1.

Figure 8.1 – Web Application as State Automaton

Web Applications: technologies and models

- 186 -

A web application starts with a user’s request and it continues
modifying its state according to the requests sent to the web server
after a user interaction. In the model of the figure 10.1, we have:

 WAS(i): stands for Web Application State at the stage i. It
represents the state evolution of the web application.

 SR(j): stands for State representation j. It shows to the client a
representation of the web state stored on the server.

This model shows how the state of a web application is important and
how it drives the evolution of user interaction. Now we will classify
the several approaches to the development of a web application and
then we will analyze in details the most significant examples present
on the market.

We could divide web application development approaches in the
following categories:

1) Programmatic approaches: this is a code-centric approach in
which a web page has associated code written in a scripting
language such as Perl, Python, etc. or a programming language
such as C/C++. The same code is responsible for generating a
response (content and presentation) related to a browser’s
request. In this category we can include CGI and FastCGI.

2) Hybrid approaches: a web page is composed by embedded
blocks containing “scripts” and mark-up language. On the
server-side the response is produced by the HTML parts merged
with the output of the code blocks which are separately
translated and executed. In this case content and presentation
are mixed. In this category we can include PHP, Microsoft’s
Active Server Page (ASP), and Sun’s Java Server Pages (JSP).

3) Frameworks: in this approach we have the separation of content
(model) from presentation (view). Frameworks provide a
consistent infrastructure that includes a rich set of services such
as integrated support for database access, authentication and
state or session management. In this category we can include

Web Applications: technologies and models

- 187 -

Microsoft’s ASP.NET Web Forms, ASP.NET MVC, Sun’s Java
Servlet and, Java Server Faces.

4) Web Content Management System (WCMS): it is a
meta-application which provides a Rapid Web Application
development by using a set of services at a higher level of
abstraction. A WCMS typically provides a set of built-in
functionalities such as:

 set of templates;

 database connection;

 API for session control, authentication, authorization etc.

 integrated shopping cart management;

 integrated search engine;

and a set of extensions called modules or plug-in.

Web Applications: technologies and models

- 188 -

CGI
The use of CGI mechanism has been the first way to develop a web
application. In the figure 10.2 is shown a request-response cycle of a
CGI web application, in which we can see the various state transitions.

Figure 8.2 – CGI Web Application.

The characteristics of a CGI web application are:

a) The web page is composed by HTML and calling to CGI script
like action=http://../cgi-bin/run/cgi-script.cgi;

b) The session state is represented on the web page for example as
hidden fields.

http://../cgi-bin/run/cgi-script.cgi

Web Applications: technologies and models

- 189 -

c) The web application state is represented on the web server using
information stored in a file or in a database.

d) The new state on a web page in the browser as a result of a user
interaction is communicated to the web server sending the entire
web page.

e) The CGI script has to handle input information and has to build
up the entire response to send back to the client.

f) The CGI environment doesn’t provide any mechanisms for the
session control.

g) In using CGI we have a unique event-loop that starts on the
browser (View), after it travels on internet as an entire web page,
then it is processed on the web server by a CGI script
(Controller–Model) and it ends up with a response sent back to
the browser.

h) The web server and the CGI script runs in separate address
spaces.

i) The CGI script may be written in any programming language
and may be either an executable or an interpreted program.

ASP/PHP/JSP
After the birth of server-side scripting languages as ASP and PHP, we
have a different manner to develop a web application. It introduces a
programming paradigm in which the server-script is hosted and
intermixed with HTML in the web page and processed on the web
server. Differently from CGI, the ASP and PHP environments provide
several built-in mechanisms to manage the web application’s state.

Web Applications: technologies and models

- 190 -

Figure 8.3 – ASP Web Application.

The characteristics of the hybrid approach to a web application
development are:

a) The web page is composed by mixed HTML and script blocks;

b) The environment provides mechanism for the control of the
state both at application level and at session level (such as
Application and Session objects in ASP).

c) The result of user interaction with the browser is communicated
to the web server sending the entire web page.

d) The server-side script builds part of HTML page at the character
granularity level.

e) We have a unique event-loop that starts on the browser (View),
after it travels on internet as an entire web page, then it is

Web Applications: technologies and models

- 191 -

processed on the web server (Controller–Model) and it ends up
with a response sent back to the browser.

f) The server-side script is managed by the web server inside its
address space.

g) The server-side script language depends on web server
environment.

ASP.NET Web Forms
This approach is designed on the concept of Web Form focused on UI
and RAD.

Figure 8.4 – ASP .NET Web Application.

The characteristics of this framework approach to a web application
development are:

Web Applications: technologies and models

- 192 -

a) The web page is composed by Web Form containing Server
Controls and ViewState (the session state of the web application)
and HTML.

b) The environment provides functionalities for the control of the
state both at application level and at session level by using the
ViewState’s mechanism.

c) All the changes made by the user on the editable components of
the Web Form are communicated to the web server sending the
entire web page (Web Form + Server Control + ViewState) to the
related Page Controller. The Page Controller, during the Page
Postback event using the received modified web page and
executing the code behind, updating the web application state
and rebuilding the same page, which is then sent back to the
client.

d) The server-side Page Controller re-builds the entire web page
based on the Web Form with its Server Controls, and the
ViewState during the Postback event.

e) We have two event-loops one on the client and the other on the
server, which are synchronized when the user triggers an event
such as click on a submit button. The MVC ON THE CLIENT
manages the interaction between user and the interface. The
client MVC maintains the state of the application, handles all
requests to the server, and controls how the data is presented in
the view. The MVC ON THE SERVER handles requests from the
client. The Page Controller MVC processes the web page sent
from the client application, and manages the code behind
execution on the server during the page PostBack. The main
difference respect to MVC on the client is that here there is no
user interface. Instead of a user interface, the view would be the
new Web Form that is being returned to the client.

JSF
JSF is a UI framework for Java Web Applications. It decouples UI
components from their presentation. This allows the components to be
rendered in different way on different devices.

Web Applications: technologies and models

- 193 -

Figure 8.5 – JSF Web Application.

The characteristics of this framework approach to a web application
development are:

a) The web page is composed by HTML, taglib and Java code
limited to referencing model component names and properties.

b) The state is represented by the FacesContext. When a page
request is submitted to the server, it creates a hierarchical tree of
UI components which represents the elements constituting the
page. The JSF engine parse this component tree and wires all the
declared event handlers and validators to the specific
component. All this information is finally persisted in a
FacesContext. The content of FacesContext is utilized in the
following phases until the response is rendered.

c) JSF is an event-driven framework that on the server-side handles
User Interface (UI) component interactions, input validations,
page navigation and rendering. The JSF event model is
composed by:

 User Interface component that are the source of events;

Web Applications: technologies and models

- 194 -

 Events: we have two set of Events: ActionEvent and
ValueChangedEvent which both extend the base event
class FacesEvent.

 The Listener classes each for every kind of event.
ActionListeners for the ActionEvent and
ValueChangedListeners for ValueChangedEvent.
These Listeners are registered inside the related
component class.

ASP.NET MVC
It is a framework approach that has introduced several innovations
based on AJAX technology, even if it has many similarities with
ASP.NET.

Figure 8.6 – ASP .NET MVC Web Application.

Web Applications: technologies and models

- 195 -

The characteristics of this framework approach to a web application
development are:

a) The web page is composed by Web Form containing Server
Controls and ViewState (the session state of the web application)
and HTML.

b) The environment provides functionalities for the control of the
state both at application level and at session level by using the
ViewState’s mechanism.

c) Only the changes, made by the user on the editable components
at the “AJAX-panel level“, are communicated to the Front
Controller on the web server. It dispatches the request to the
appropriate server controller which handles it and builds a
response which is sent back to the client to update only the
interested part of web page on the browser.

d) The server-side doesn’t re-build the entire web page.

e) We have two event-loops one on the client and the other on the
server synchronized when the user triggers an event. On the
server side the Front Controller and the specific Controller and
View implements the Model2 pattern. In fact the Controller
represented by the Front Controller delegates the processing to
helper components in this case the “Controllers”

WCMS-based Web Application
Content Management System-based Web applications are applications
which combine both the web technology of aforementioned web
application development approaches and the managing of the
unstructured information. Defining a web application as “an
Information System providing facilities to access complex data and interactive
services via the Web and changes the state of business”, [10.02], we could
define “CMS-based Web applications as a Web application for the
management and control of content”. Their typical characteristics are a
strict separation of content, structure and graphical design, a content
repository for the reuse of information and an integrated workflow for

Web Applications: technologies and models

- 196 -

structuring the process of creation and publication of information. In
the figure 10.7 we can see a general architecture of a web application
based on a WCMS.

Figure 8.7 – CMS-based Web Application.

Web Applications: technologies and models

- 197 -

The continuous changing in the web development landscape makes
the learning of the core Internet technologies for web developers
critically important. The huge quantity of tools, frameworks and
WCMS focused on the development of a web application emphasizes
how much it is important to follow the evolution of this domain in
order to be ready for the next generation of web applications, which
should resolve or simplify many of their development and
maintaining problems.
I hope this thesis will contribute to the understanding of the basics that
are needed to share the evolution of web application.

Web Applications: technologies and models

- 198 -

Bibliography

[8.01] Souer, J., van de Weerd, I., Versendaal, J., & Brinkkemper, S.,
Situational requirements engineering for the development of
content management system-based web applications, Department
of Information and Computing Sciences, Utrecht University
The Netherlands, 2007;

[8.02] Gnaho, C. (2001), Web-Based Information Systems Development
– A User Centered Engineering Approach, Lecture Notes in
Computer Science, Vol. 2016, pp. 105 – 118.;

Web Applications: technologies and models

- 199 -

ALPHABETICAL BIBLIOGRAPHY

[1] Adam Barth (UC Berkeley), Charles Reis (University of Washington), Collin
Jacksion (Stanford University), The Security Architecture of the Chromium
Browser, 2008;

[2] Ahmed E. Hassan and Richard C. Holt Software Architecture Group
(SWAG), A Reference Architecture for Web Servers, Dept. of Computer
Science University of Waterloo, Ontario;

[3] Alan Grosskurth, Michael W. Godfrey, Architecture and evolution of the
modern web browser, David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, 2006;

[4] Alan Trick, An overview of the REST Architecture, Advanced Web
Programming, 2007;

[5] Andrew S. Tanenbaum, Maarten van Steen, Distributes systems:
principles and Paradigms, Prentice Hall 2002;

[6] Ann Navarro, XHTML by Example, Que 2001;

[7] Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel, Architecture recovery of
Apache 1.3 - A case study, Hasso Platter Institute for Software System
Engineering, Postman Germany;

[8] Daniel A, Menascé, Presenter: Noshaba Bakht, Web Server Software
Architectures, School of Computing and Engineering University of Missouri at
Kansas City, 2004;

[9] David Lane, Hugh E. Williams, Web Database Applications with PHP &
MySQL, O’Reilly, 2002;

[10] Dino Esposito, ASP:NET MVC, Microsoft Press, 2010;

[11] DocBook, www.Docbook.org, it is a schema particularly well suited to books
and papers about computer hardware and software;

[12] Elliotte Rusty Harold, Java Network Programming, O’Reilly 2005;

[13] Emanuele Della Valle, Irene Celino, Dario Cerizza, Semantic Web, Pearson
Addion Wesley, 2009;

http://www.Docbook.org,

Web Applications: technologies and models

- 200 -

[14] Gnaho, C. (2001), Web-Based Information Systems Development – A
User Centered Engineering Approach, Lecture Notes in Computer
Science, Vol. 2016, pp. 105 – 118.;

[15] http://en.wikipedia.org/wiki/Internet_socket: Internet socket from Wikipedia,
the free encyclopaedia;

[16] http://en.wikipedia.org/wiki/Representational_State_Transfer, from
Wikipedia;

[17] http://hoohoo.ncsa.illinois.edu/cgi/interface.htm:l the original CGI
Specification;

[18] http://jquery.com/, jQuery JavaScript library;

[19] http://learn.iis.net/: the official Microsoft IIS site;

[20] http://www.chromium.org/: The Chromium projects include Chromium and
Chromium OS, the open-source projects behind the Google Chrome browser
and Google Chrome OS, respectively;

[21] http://www.cs.tut.fi/~jkorpela/forms/cgic.html Getting Started with CGI
Programming in C;

[22] http://www.dotnetfunda.com/articles/article821-beginners-guide-how-iis-process-
aspnet-request-.aspx: Beginner’s Guide:How IIS Process ASP.NET
Request:;

[23] http://www.faqs.org/faqs/: Index of RFC (Internet Requests for
Comments) Document;

[24] http://www.json.org: JSON (JavaScript Object Notation) is a
lightweight data-interchange format. It is easy for humans to read
and write. It is easy for machines to parse and generate;

[25] http://www.w3.org/TR/XMLHttpRequest/: the XMLHttpRequest
specification defines an API that provides scripted client functionality for
transferring data between a client and a server;

[26] http://www.w3c.org/: I The World Wide Web Consortium (W3C) is
an international community where Member organizations, a full-
time staff, and the public work together to develop Web standards;

http://en.wikipedia.org/wiki/Internet_socket:
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://hoohoo.ncsa.illinois.edu/cgi/interface.htm:l
http://jquery.com/
http://learn.iis.net/
http://www.chromium.org/:
http://www.cs.tut.fi/~jkorpela/forms/cgic.htm
http://www.dotnetfunda.com/articles/article821-beginners-guide-how-iis-process-
http://www.faqs.org/faqs/
http://www.json.org
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3c.org/

Web Applications: technologies and models

- 201 -

[27] http://www.w3schools.com/html5/default.asp: HTML 5 Tutorial;

[28] Hypertext transfer protocol – http/1.1, RFC 2616, IETF, 1999;

[29] Iris Lai, Jared Haines John, Chun-Hung, Chiu Josh Fairhead,
Conceptual Architecture of Mozilla FireFox (version 2.0.0.3), 2007;

[30] Jacco Van Ossenbruggen, Anton Eliëns and Bastiaan Schönhage, Web
Application and SGML, Faculty of Mathematics and Computer Sciences,
1995;

[31] Jessica Chen, Xiaoshan Zhao, Formal Models for Web Navigations with
Session Control and Browser Cache, School of Computer Science, university
of Winsdo. Canada, 2004;

[32] Keyston Weissinger, ASP in a nutshell, O’REILLY, 1999;

[33] Kris Hadlock, Ajax for Web Application Developers, Sams Publishing
2007;

[34] Leon Shklar, Rich Rosen, Web Application Architecture:Principles,
Protocols and Practices, Second Edition John Wiley & Sons Ltd, 2009;

[35] Luciano Noel Castro, Web 2.0, creare siti di nuova generazione, Sprea
Editori S.p.A. 2008;

[36] Matthew Crowley, Pro Internet Explorer 8&9 Development, Apress, 2010;

[37] Michael Jakl, REST REpresentational State Transfer, University of
Technology Vienna;

[38] Microsoft Developer Network, Internet Explorer Architecture,
http://msdn.microsoft.com/en-us/library/aa741312(VS.85).aspx;

[39] Peter B. MacIntyre, PHP The Good Parts, O’Reilly Media, 2010;

[40] Pierre Delisle, Jan Luehe, Mark Roth, Java Server Pages Specification,
Version 2.1 Sun Microsystem, 2006;

[41] Rajiv Mordani, Java Servlet Specification, Sun Microsystem. 2009;

[42] RFC2965, HTTP State Mechanisms, 2000;

[43] Rick Strahl, A low-level Look at the ASP.NET Architecture,
http://www.west-wind.com/presentations/howaspnetworks/howaspnetworks.asp;

http://www.w3schools.com/html5/default.asp:
http://msdn.microsoft.com/en-us/library/aa741312(VS.85).aspx;
http://www.west-wind.com/presentations/howaspnetworks/howaspnetworks.asp;

Web Applications: technologies and models

- 202 -

[44] Rob's Open Source '99 Presentations at O'reilly's Open Source '99
Conference in Monterey, CA;

[45] Roy T. Fielding, Richard N. Taylor, Principled Design of the Modern Web
Architecture, University of California, Irvine, 2002;

[46] Souer, J., van de Weerd, I., Versendaal, J., & Brinkkemper, S.,
Situational requirements engineering for the development of content
management system-based web applications, Department of
Information and Computing Sciences, Utrecht University The
Netherlands, 2007;

[47] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform resource
identifiers (URI): generic syntax, Technical Report Internet RFC 2396,
IETF, 1998;

[48] The Java EE 5 Tutorial for Java Sun System Applications Server 9.1, Oracle,
June 2010;

[49] Vito Roberto, Marco Frailis, Alessio Gugliotta, Paolo Omero,
Introduzione alle tecnologie web, McGraw-Hill 2005.

[50] Wikipedia, Web Application,
http://en.wikipedia.org/wiki/Web_application;

[51] Wikipedia, World Wide Web, http://en.wikipedia.org/wiki/World_Wide_Web;

[52] www.fastcgi.com, FastCGI is simple because it is actually CGI with
only a few extensions;

[53] www.w3schools.com, an Internet Developers Portal from 1998;

http://en.wikipedia.org/wiki/Web_application;
http://en.wikipedia.org/wiki/World_Wide_Web;
http://www.fastcgi.com,
http://www.w3schools.com

