Web Applications: technologies and models

CHAPTER 4

AJAX AND REST

4.1 INTRODUCTION
AJAX is a name applied to a set of programmatic techniques that enable

browsers to communicate asynchronously with web server. Common uses
of AJAX include retrieving content from the server to be inserted into the
current page and transmitting new or update information to be persisted on
the server. AJAX techniques make it possible to achieve these results
without causing a total refresh or re-rendering of the current page.
Ajax incorporates several pre-existing technologies such as:

» standards-based presentation using XHTML and CSS;

= dynamic display and interaction using the Document Object Model;

» data interchange and manipulation using XML and XSLT;

» asynchronous data retrieval using XMLHttpRequest;

* and JavaScript binding everything together.

AJAX stands for either Asynchronous Javascript And XML or
Asynchronous Javascript And XMLHttpRequest. AJAX does not
necessarily make use of XML but it almost always involves both Javascript
and the XMLHttpRequest object. Just as DHTML can be thought of as
“Javascript, CSS and HTML DOM”, AJAX can be summarized as
“DHTML and XMLHttpRequest (XHR)”.

Microsoft originally released the XHR object in 1999 with Windows IE 5
as an ActiveX object available through the use of Javascript and VBScript.
It is now supported by FireFox, Chrome, Safari, Opera by using a native

Javascript object. Although the technologies have been in existence and

-132-

Web Applications: technologies and models
used by some developers in the past, it has only recently gained large

popularity, also based on the support offered by browsers.

4.2 AJAX WITH HTML HIDDEN FRAME
Before the creation of the XMLHttpRequest object by Microsoft, HTML

frames were used as a vehicle for submitting background request and
accepting responses.

This technique is based on the use of a main frame, a secondary frame and
a JavaScript code.

The main frame is responsible for the interaction with the user and for the
presentation of information.

The secondary hidden frame is used for background request and response.
The JavaScript code in the main content frame passes information to the
JavaScript code in the hidden frame, which submits an HTTP request. The
response to this request refreshes the hidden frame, triggering additional
JavaScript code that passes information and control back to the main
content frame.

Let’s see some example just for understanding the mechanism.

Example with GET request

The web page composed by more than one frame is built using the tag
<frameset>, which includes the tag <frame> for each frame to visualize®.
Let’s see the various web pages involved in order to do a GET request in an

asynchronous way.

<html>
<head>Ajax using hidden frame</head>
<frameset rows="100%, 0” style="border:0”>
<frame name="mainframe” src="main.html”

noresize="noresize” />

2 The tags <frameset> and <frame> are not longer supported in the HTML 5.

-133-

Web Applications: technologies and models
<frame name="hiddenframe” src="about:blank”
noresize="noresize” />
</frameset>

</html>

The attribute rows of <frameset> element contains the dimension of each
frame separated by a comma. In the previous example the visualization
frame will have all the space, while the hidden frame will be high zero
pixel.

Note the attribute noresize to prevent the user from scaling up the frames.
In this way the browsers will block the user from seeing inside the
communication frame. In the visualization frame we have linked the file
main.html while in the communication frame there is nothing, that is

about:blank. Here is the file main.html.

<html>
<body>
<script GetAsynData () {
top.frames[‘hiddenFrame’] .location="data.html”;
}
</script>
<form>
<input name="confirm” type="button”
Value="Get Data” onclick="GetAsynDatal();” />
</form>
</body>
</html>

The JavaScript function uses the top object of the browser window to
assign to the location property of hidden frame the web page to request to
the web server. When the browser locates the value of location property, it
updates the frameset loading the page data.html, which has the following

content.

-134-

Web Applications: technologies and models
<htmls>
<body>
<scripts>
Window.alert (“Data received!”) ;
</scripts>
</body>
</html>

When the user clicks on the button Get Data the message “Data received!”

appeared on a dialog box.

Example with POST request

If we use a POST request the structure of the involved web pages is a little
bit different. We are going to implement a server functionality which
inverts a string using PHP language on the web server. The frameset

structure is equal to the example with the GET request.

<html>
<head>Ajax using hidden frame</head>
<frameset rows="100%, 0” style="border:0”>
<frame name="mainframe” src="form.html”
noresize="noresize” />
<frame name="hiddenframe” src="about:blank”
noresize="noresize” />
</frameset>

</html>

The content of form.html is:

<htmls>
<body>
<fom action ="reverse.php” target="hiddenFrame”
method="POST” />
<input name="name” length="30" />

<input name="confirm” type="submit” value="Get in reverse
mode” />

</form>

-135-

Web Applications: technologies and models
</body>
</html>

In the tag <form> the target attribute contains the name of the hidden
frame to use as target. The data arrives to the web page reverse.php which

contains the server side logic of web application. Here is the content.

<html>
<body>
<scripts>
top.frames[‘mainFrame’] .document.forms [0] .name.value =
“<?php =strrev($ POST[‘name’]); ?>";
</scripts>
</body>
</html>

Advantages in using hidden frames

The main benefit in using hidden frames in Ajax applications is the
browser preservation of navigation history. The user can use the back and
the forward buttons as it was a normal web application or an ordinary web

site. This is very important for the web usability.

Disadvantages in using hidden frames

The main limit in using hidden frames is the impossibility to know what
happened to the HTTP request. The frame which manages the
communication with the server is unable to get information on the stage
reached by the request processing. The web application could be “frozen”

in a waiting state forever.

- 136 -

Web Applications: technologies and models

4.3 AJAX WITH HTML INTERNAL FRAME
With HTML 4.0 was introduced a new tag <iframe>"' which stays for

internal frame. This tag gives the possibility to insert a frame in a HTML

page without the necessity to define a frameset.

Example with GET request

The internal frames are managed in the same way as the hidden ones. Here

1s an example.

<htmls>
<body>
<scripts>
Function GetAsynData () {
top.frames[‘'internalFrame’] .location = “data.html”

}

</scripts>

<form>
<input name="confirm” type="button”

value="Get Data” onclick="GetAsynDatal();” />

<iframe src="about:blank” name="internalFrame”

style="display: none”></iframe>

</form>

</html>

The internal frame is present in the web page with a empty content namely
we have src="about:blank”. Moreover the style attribute with display: none

communicates to the browser not to show the internal frame.

! The tag <iframe> is still supported in HTML 5 with new attributes and with other ones no
longer supported. It creates an inline frame that contains another document.

-137-

Web Applications: technologies and models

Example with POST request

Using a POST request the structure of the web page is a bit different as we

can see in the following example.

<htmls>
<body>

<form action="reverse.php” target="internalFrame”>

<input name="name” length="30" />

<input name="confirm” type="submit” value="Get Data” />

<iframe src="about:blank” name=”"internalFrame”

style="display: none”></iframe>

</form>
</body>
</html>

We have in the calling web page only an internal frame so the reverse.php

will be in this way.

<html>
<body>
<scripts>
top.document.forms [0] .name.value =
“<? =strrev($_POST[‘name’]); ?>";
</scripts>
</body>
</html>

- 138 -

Web Applications: technologies and models

4.4 AJAX INTERACTION MODEL
Now we analyze the flow of interaction model from the request to the

response. The structure can be summarized in the Fig.4.1.

browser client

user interface

JwaScnI-btﬂll ‘r
+ Hmu('ss data

Ajax engine

HTTP request
httg(s) transport
XML data

wih and/for XML server

v A

datastoras, backend
processing, legacy systems

server-side systems
Figure 4.1 — AJAX Interaction Model

AJAX Engine
The XMLHttpRequest (XHR) is the core of the AJAX engine. It is the

object that enables a page to GET data from or POST data to the server as a
background request, which means that it does not refresh the entire
document in the browser window during this process.

This type of interaction model is more intuitive than the standard HTTP
request. This is because changes happen on demand when the user makes
them, and allow web applications to feel more like desktop applications.
The XMLHttpRequest eliminates the need to wait on the server to respond
with a new page for each request and allows users to continue to interact

with the page while the requests are made in the background.

- 139 -

Web Applications: technologies and models
However, even if the data processing is in the background, the GET and
POST methods of the XHR object work the same as standard HTTP
request. Using either the POST or the GET method you can make a request
for the data from the server and receive a response in any standardized

format.

In the Fig.4.2 we can see how a (user) event is managed using the AJAX

paradigm together with the abstraction of Model-View-Controller.

| View Controller Model

Web Server
(4]

Senver
Data

:'

Seiver
Code

;

Figure 4.2 — AJAX and MVC event management.

The entire cycle of event is characterized by the following steps:

1) the user click on the button in order to get data;

2) the event is caught by the AJAX engine;

3) the AJAX engine makes a request to the appropriated server service;

4) the server service ask for local resource and services in order to
satisfy the request;

5) the local resources and services provide the requested data to the
server service;

6) the server service make a response to the AJAX Engine;

7) the AJAX Engine shows the requested data on the browser.

- 140 -

Web Applications: technologies and models
Whereas generally a browser only allows two HTTP persistent connections
to a server at anyone time because it trying to be standard compliant to
RFC 2616, we can make many requests on this two connections. The
requests that cannot be immediately managed are parked in an internal
queue on the browser. As a consequence a user can make many AJAX

requests but they are satisfied with different delays.

Creating the XMLHttpRequest Object and make a Request

All AJAX requests start with a client-side interaction that is typically
managed by Javascript. It creates the XHR object and makes an HTTP
request to the server.

To create the request object you must check to see if the browser uses the
XHR or the Activex object. Windows IE 5 e IE6 use ActiveX object,
whereas IE 7 and above, Mozilla FireFox, Opera, Safari and Chrome use

the native Javascript XHR object.

Function makeRequest (url, callbackMethod)

{

If (window.XMLHttpRequest)

{

XHR = new XMLHttpRequest () ;

}

Else if (window.ActiveXObject)

{

XHR = new ActiveXObject (“Msxml2.XMLHTTP") ;

}

Else {
throw mnew Error(“Ajax 1s not supported Dby this

browser.”) ;

2 The standard is RFC 2616, “Hypertext Transfer Protocol — HTTP/1.1". Section 8.1.4,
covering “Persistent Connections / Practical Considerations”, states: “Clients that use
persistent connections SHOULD limit the number of simultaneous connections that they
maintain to a given server. A single user client SHOULD NOT maintain more than 2
connections with any server or proxy. A proxy SHOULD use up to 2*N connections to another
server or proxy, where N is the number of simultaneously active users. These guidelines are
intended to improve HTTP response times and avoid congestion.”

- 141 -

}

Web Applications: technologies and models

sendRequest (url, callbackMethod) ;

The object can now be used to access all the properties and methods listed

in Tables 4.1 e 4.2.

Table 4.1 —- XMLHttpRequest Properties

Property Definition

onreadystatechange | It is fired when the state of request object
changes and allows us to set a callback method
to be triggered. This property is fired for a total
of 4 times.

readyState Returns number values that indicate the current
state of the object.

0 the object is not initialized with data;

1 the object is loading its data;

2 the object has finished loading its data;

3 the user can interact with the object even

though it is not fully loaded;

4 the object is completely initialized.
responseText S&ing version of the reéﬁéﬁse from the server. |
responseXML DOM-compatible ~document object of the |

response from the server.
status Status code of the respdﬁs'é" from the server.
statusText A status message returned as a string.
Table 4.2 — XMLHttpRequest Methods
Method Definition
Abort() Cancel the current HTTP Request.
getAllResponseHeaders() Retrieves the values of all the HTTP

142 -

Web Applications: technologies and models

headers.

getResponseHeader(“label”) Retrieve the value of a specified

HTTP header from the response body.

Open(“method”,”URL”[,asyncF | Initializes a request and specifies the
lag[,userName[,”password”]]]) | method, URL, and authentication

information for the request.

Send(content) Sends an HTTP request to the server
and receives a response. It is like

clicking the submit button on a form

SetRequest(“label”,”value”) Specifies the value of an HTTP header
based on the label.

Function sendRequest (url, callbackMethod) {
XHR.onreadystatechange = function () {
if (XHR.readyState == 4) {
if (XHR.status >=200 && XHR.status < 300) {
callBackMethod;
Vi
}
}i
XHR.open (“GET”, url, true);

XHR.send (null); // GET requests typically have no body

The onreadystatechange is an event handler fired only in asynchronous
mode when the state of the request object change and allow us to set a
callback method to be triggered. To this property we can assign a reference

to a function or build an anonymous function to it as in the above example.

// Assigning a reference to a function

XHR.onreadystatechange = FunctionName;

// Building an anonymous function to it

XHR.onreadystatechange = function() { .. };

143 -

Web Applications: technologies and models
The open method of XHR objects takes three parameters. The first is a
string that represents the method in which the request is to be sent. This
method can be GET, POST or PUT. The second parameter is the URL that
is being request in the form of a string, which is XML, JSON, a text file or
a server-side language that returns any of these formats. The last parameter
is a Boolean value that has a default value of true for asynchronous and
false for synchronous.

The send method is the actual method that sends the HTTP request and
receives a response in the format that you specify. This method takes one
string parameter, which can be XML or a simple key/value pair to be sent

as a POST.

An AJAX response can come in various formats such as JSON and XML.

XML
XML is composed of custom tags called elements, which are defined in the
architecture phase of a web application. They can represent any name,

value or data type that will be used in your application. Here is an example:
<?xml version="1.0" encoding="iso-8850-1" ?>

<categories>
<categorys>Priority</category>
<category>Object<category>
<category>Expiry Time<category>
<categorys>When<category>
<categorys>Where<category>

</categories>

<rows>
<items>
<item> <! [CDATA[<u>Hight</u>]]> </item>
<item> <! [CDATA [Project Financial Plan]] > </item>

<item> 2009-09-06 15:30:00</item>

144 -

Web Applications: technologies and models
<item action="alert ('Meeting') ;” icon="img/warn.gif” >
3</item>

<item> Purple Room </item>

</itemss>
</rows
<rows>
<items>
<item> <! [CDATA [<i>Normal</i>]] > </item>
<item> <! [CDATA [Project Management]] > </item>

<item> 2009-10-12 10:30:00</item>

<item action="alert ('Meeting') ;”
icon="img/warn.gif”>2</item>

<item> White Room </items>
</items>

</rows>

</xml>

Let's take a look at attributes and how they help us add additional
information to your XML data.

In order to represent an expiry event we have created a group of item that
can eventually become a collection of objects when they are parsed on
client side.

The item with action attribute means that the action is triggered starting n
days before the established meeting time and the icon is associated to the
element according to the status.

There are some issues that are very important to be aware of when using
attributes. First it is non possible to have multiple values in one attribute.
Second HTML cannot be added to attributes because it will create an
invalid structure. The only way to add HTML to an XML structure is
within an element. In order to add HTML to elements so that it is readable
by programming language that is parsing it and does not break the

validation of the XML, we need to add CDATA tags to the element tags.

- 145 -

Web Applications: technologies and models
The HTML can be used to display formatted data into a DOM element in
our AJAX application front end.

Now we consider the following example:

<item> Project Financial Plan </item>

In that manner the nesting HTML tags don't work, because the parser will
see these elements as nested or child element of the parent rather than
HTML tags. While the following structure will be considered in the right

way.

<item> <! [CDATA[Project Financial Plan1] > </item>

The text value Project Financial Plan will display as bold text to the user on
the document, by simply targeting an HTML tag using DOM and
appending the value with JavaScript's intrinsic innerHTML property or

using document.write().

Parsing XML

In the body section of the document we can set:

<body>

<a href="javascript: makeRequest ('data.xml',
onXMLresponse) ; “>xml

<a href="javascript: makeRequest ('data.js"',
onJSONresponse) ; “>json

<hr noshade="noshade” >

<div id="loading”></div>

<div id="header_section”></div>

<div id="body section”></div>

</body>

- 146 -

Web Applications: technologies and models
so we can parse the response as we would like on the specific request being

made. The Response Method is:

function onXMLResponse () {

if (XHR.readyState ==)

{

var response=XHR.responseXML.documentElement;

//Parse here

We will start by parsing the category values from the XML file and adding
them to the body div via the innerHTML property.

In the parsing we will use the Javascript's intrinsic getElementByTagName
method. Using this method will return an array of all elements by the name

that you specify without looking at the depth in which they reside.

// Categories
document .getElementbyId (“*header section”) .innerHTML

=“Agenda
";

var categories = response.getElementByTagName ('category') ;
for (var i=0; i<categories.length; i++)

{

window.document .getElementById (“*body section”) .innerHTML+=

response.getElementByTagName ('category') [i] .firstChild.data+"</b
r>";

}

// Items
var row:response.getElementByTagName('row');
for(var i1i=0; i<row.length; i++)
var
action=response.getElementByTagName ('items') [i] .getAttribute ('ac

tion') ;

- 147 -

Web Applications: technologies and models
var icon

=response.getElementByTagName ('items') [i] .getAttribute('icon') ;

window.document .getElementById (“*body section”) .innerHTML+=

action+”
"+icon+"
";

var items
=response.getElementByTagName ('items') [1] .childNodes;
for(var j=0; j<items.length, j++)

{

for (k=0; k<items[j].childNodes.length; k++)

{

window.document .getElementById(“*body section”) .innerHTML+=

items [j] .childNodes [k] .nodeValue+”
";

}

Parsing JSON

JSON or Javascript Object Notation is a data-interchange format, even if it
is not a standard, it is becoming widely accepted. It is essentially an
associative array or hash table. JSON parsing is natively with JavaScript's

23
eval

method, which makes it extremely simple to parse when using it in
your AJAX application. The downfall is that the parsing can be quite slow

and insecure due to the use of the eval method. Rogue sites can engage in

> The eval() function evaluates or executes an argument. If the argument is an expression,
eval() evaluates the expression. If the argument is one or more JavaScript statements, eval()
executes the statements. For example the following script

<script type="text/javascript"s>
eval ("x=5;y=25;document .write (x*y)") ;

</scripts>

produces as output 25. Using eval() it is a very simple way to parse JSON text, here is an
example

<script type="text/javascript"s>

var jsontext = "{al: ‘value 1’, a2: 'value2'}";
var object = eval ("(" + jsontext + ")");
</scripts>

- 148 -

Web Applications: technologies and models
JavaScript hijacking by sending responses that contains malicious
executable code in place of (or hidden inside) JSON Data.
The structure of a JSON file is representative of a JavaScript object in the
way that one file can consist of multiple objects, arrays, strings, numbers,
and Booleans.

Here is an example of a complete JSON file:

{
“data” :
“categories”:
{
“category”: [“Priority”, “Object”, “When”, “Expiry Time”, “Where”]
1
“row” :
{
“items” :
[
{ “action”: ”alert ('Meeting') ;”
“icon” : "img/warn.gif”
“item” : [“<usHight</u>",
“Project Financial Plan ",
%2009-09-06 15:30:00",
w3,
“Purple Room "]
}.
{ “action”: "alert('Meeting') ;"
“icon” : "img/warn.gif”
“item” : [“<isNormal</i>",
“ Project Management ",
%2009-10-12 10:30:00",
wou
“White Room ”]
}
]
1
1

As you can see, it is much slimmer than the XML version of the lack of

redundancy in tag names.

149 -

Web Applications: technologies and models

In order to parse the data, we will begin by creating the callback method,

checking the ready state of the request, and evaluating the responseText.

Function onJSONResponse ()

{

if (checkReadyState (XHR, 'complete') == true)

{

eval (“var response = (“+XHR.responseText+”)");

Let's start by targeting from the data and appending them to the body div.

// Categories

for (var i in response.data.categories.category)

{

document .getElementById (“body”) .innerHTML+=

response.data.categories.category[i]+"
";

As you can see, it is very easy to target the data it is parsed into JavaScript
object. Property values are accessible by simply using dot syntax to target
them by the proper path. The we can simply do for in loop to target all the

property values within a specific object.

for (var i in response.data.row.items)

{

for (var j in response.data.row.items[i])

{

document .getElementById (“*body”) .innerHTML+=

response.data.row.items [i] [j]+"
";

- 150 -

Web Applications: technologies and models

4.5 EASY AJAX INTERACTIVITY WITH jQuery

Web application interactivity is enhanced by using the jQuery library
which allows to write code in a more readable way and enormously
simplifies the life to the web developer.

The jQuery function for sending AJAX request is $.ajax(). It is called
without a selector because AJAX actions are global functions and are
executed independently of the DOM.

The $.ajax() method accepts as an argument only an object containing
settings for the AJAX call. It this function is called without any settings the
method will load the current page and will do nothing with the result.
Considering the main and more used settings, the object passed as

argument to $.ajax() has the following structure:

Var AJAXSettings = {};
AJAXSettings.data =
AJAXSettings.dataFilter =
AJAXSettings.dataType =

AJAXSettings.success =

)

)

)

) AJAXSettings.error =
)

) AJAXSettings.type =
)

AJAXSettings.url =

$.ajax (AJAXSettings) ;

1) the data property describes any data to be sent to the remote script
either as a query string “varl=vall&var2=val2& ..” or as JSON
format ({ “varl” : “vall, “var2”: “val2”, ..}).

2) dataFilter(data, type) is a callback function that allows to
filter the data coming from the remote script. The function takes two
arguments: the raw data returned from the server, and the dataType
parameter.

3) dataType: this described the type of data expected from the
request. If this property is not specified, jQuery will try to get the

- 151 -

Web Applications: technologies and models
result type using the MIME type of the response. The available types
are: “xml”, “html”, “script”, “json”, “jsonp”,, and “text”.

4) error (XMLHttpRequest, textStatus, errorThrown) is a
callback function which is execute in case of request error. The
second parameter of the function is a string describing the type of
error that occurred. The possible values for the second argument are
null, “timeout”, “error”, “notmodified” and “parsererror”.

5) success (data, textStatus, XMLHttpRequest) is a
callback function that is executed if the request completes
successfully. The parameters of this function are: the data returned
from the server, formatted according to the 'dataType' parameter; a
string describing the status; and the XMLHttpRequest object.

6) type is a string which is the type of request to send. The possible
values area GET (the default value), POST, PUT and DELETE.

7) url is the URL to which the request is to be sent.

Let us give an example to show how is easy to use AJAX with this method.

Var AJAXSettings = {};

AJAXSettings. type “POST”

AJAXSettings.url

“GetData.php”;
AJAXSettings.data = “Set=Yes&Yellow=Yes&Red=No” ;

AJAXSettings.success function (data){

$ (“#ResultPanel”)
.css (“background”, "yellow”)

.html (data) ;

bi

$.ajax (AJAXSettings) ;

4.6 Modern Web Application: REST

The advent and the diffusion of the AJAX technology have brought to the
development of a new approach to the web application design. This new
model is called REST. It stands for REpresentational State Transfer and it

comes from Roy Fielding’s PhD dissertation published in 2000.

-152 -

Web Applications: technologies and models
Fielding analyzed all networking resources and technologies available for
creating distributed applications and arrived to define the following
constraints that identify a RESTful system:

— it must be a client-server system;

it has to be stateless: each request should be independent of others;

— the network infrastructure should support cache at different levels;

— each resource must have a unique address and a valid point of

access;

— it must support scalability.
These constraints don’t impose what kind of technology to use and, what is
more important, we can use existing networking infrastructures such as the
Web to create RESTful architectures.
Fielding defines REST in [4.5] as “a coordinated set of architectural
constraints that attempts to minimize latency and network communication
while at the same time maximizing the independence and scalability of
component implementations. REST enables the caching and reuse of
interactions, dynamic substitutability of components, and processing of
actions by intermediaries, thereby meeting the needs of an Internet-scale

distributed hypermedia system.”

4.7 REST: ARCHITECTURAL ELEMENTS
REST considers three classes of architectural elements:

— data elements;
— connecting elements (connectors);

— processing elements (components).

- 153 -

Web Applications: technologies and models

Data elements

- Resource: it is the key abstraction of information. Any information
that can be accessed and transferred between clients and servers is a
“resource”. A resource can change overtime while its semantic is
static. In this manner we refer to a concept instead of a single
representation, as a resource may have multiple representations. For
example, a resource that represents a circle may accept and return a
representation that specifies a centre point and radius, formatted in
SVG (Scalable Vector Graphics), but may also accept and return a
representation that specifies any three distinct points along the curve

as a comma-separated list [4.08].

- Resource identifiers: they are used to distinguish between resources.
They are the only means for clients and servers to exchange
representations. In the web environment the identifier would be an
uniform Resource Identifier (URI) as defined in the Internet RFC
2396 [4.09].

- Representation: it is what is transferred between the components. A
representation is a temporal state of the actual resource located in
some storage device at the time of the request. A representation
consist of:

e the content: a sequence of bytes;
e describing content: representation metadata;

e metadata describing metadata.

154 -

Web Applications: technologies and models

Connectors
REST uses various connector types to encapsulate the activities of
accessing resources and transferring resource representations. These
connectors could be:

— Client: sending requests and receiving responses;

— Server: listening for requests and sending responses;

— Cache: can be located at the client or server connector to save

cacheable responses, can also be shared between several clients;
— Resolver: transforms resource identifiers into network address;
— Tunnel: relays requests, any component can switch from active

behaviour to tunnel behaviour.

The connectors present an abstract interface for component
communication, enhancing simplicity and hiding the underlying
implementation of resources and communication mechanisms [4.05].

All rest interactions are stateless; as a consequence each request contains
all of the information necessary for a connector to understand the request,

independent of any requests that might have preceded it [4.05].

Components

REST components are identified by their role within an application.

— User agents: uses a client connector (for example a Web Browser) to
initiate a request and becomes the ultimate recipient of the responses.

— Origin server: uses a server connector to receive the request. It is the
definite source for representations of its resources and must be the
ultimate recipient of any request that intends to modify the value of
resource. Each origin server provides an interface to its services and
hides the resource implementation behind this interface.

— Intermediary components: they act as both a client and a server in

order to forward with possible translation, requests and responses.

- 155 -

Web Applications: technologies and models
Examples of this type of components are proxy and gateway (aka

reverse proxy).

4.8 HTTP AND REST
HTTP has a special role in the Web Architecture as both the primary

application-level protocol for communication between web components
and the only protocol designed for the transfer of resource representation
[6.05]. Before describing the architectural component of REST applied to
HTTP, we start with a simple application of REST taken from [4.06]. It is a

small web service which will provide the following functionalities:

— the user can upload a picture;

— metadata can be attached to pictures;

— pictures and attached metadata can be deleted;
— alist of pictures can be retrieved;

— picture and metadata of a picture can be retrieved.

HTTP
Gliant
HTTP
Giiant
HTTF
Cliant

Chard Wanearyar Dmacts

Figure 4.3 — Overview of web service application.

- 156 -

Web Applications: technologies and models
Resources
The resources within the application are:
— Picture;

— Picture-Collection.

Representations

Each resource has associated representation:
— Picture: binary and XML;
— Picture-Collection: XML.

Addressing
The resources are addressable via URI. Only resources can be addressed,

not the representations. In fact the client use content negotiation to

determine which representation should be returned for example fext/xml or

image/jpeg.

Methods
We use the following methods of HTTP:

- PUT is used to upload a new picture to the server;
- POST: is used to append more metadata to the addressed resource;
- DELETE: can be use to delete a resource;

- GET: is used to retrieve a representation of a specified resource.

In general when we applied REST to HTTP we must speak of the following

concepts: nouns, verbs, adjectives, meta-data and contents.

— Nouns: In HTTP a noun is a URI. It will remain the same and be
valid for as long as the web service is on line or the context of a

resource is not changed. We use URIs to connect clients and servers

157 -

Web Applications: technologies and models
to exchange resources in the form of representation.
One practise with naming URIs is to remove
any non-essential information. We consider for example:

http://www.AExampleOfLink.com/login.aspx, the wrong element is

the aspx extension. If the web application switches to another system
for example PHP, the URI will have to be changed as well.

— Verbs: The verb in HTTP is called method. A full list of methods is
available in section 9 of RFC 1616 [6.10]. In REST we have
constraints on how to manipulate resources. In fact we have four
specific actions that we can take upon the resources: Create,
Retrieve, Update and Delete (CRUD). A mapping of CRUD actions
to the HTTP will be:

Data action HTTP protocol equivalent
CREATE POST

RETRIEVE GET

UPDATE PUT

DELETE DELETE

— Meta-data: In HTTP there are many kinds of meta-data contained in
the request and response which could be for example the MIME-
types, what program is making the request, what program is running
on the server, if the response can be compressed with g-zip etc...

— Content: using HTTP to communicate, we can transfer any kind of
information that can be passed between clients and servers. For
example if we request a Flash movie from YouTube, your browser
receive a Flash movie. The data is streamed over TCP/IP and the
browser knows how to interpret the binary stream because of the

HTTP protocol response header Content Type. Therefore on a

- 158 -

Web Applications: technologies and models
RESTful system the representation of a resource depends on the

caller’s desired type (MIME type).

4.9 AJAX AND REST
Using AJAX technology and REST together we can design a new

framework in which we can take the benefits of both dynamic interactivity

provided by AJAX and modern architecture style of REST.

Web Server

Resource |dentifier

HTTP AJAX Request

Resource Identifier

HTTP Response

Resource |dentifier

Figure 4.4 — AJAX and REST Framework

The figure 4.4 shows a representation of the aforementioned framework.
The main characteristic is that the client end the server are uncoupled. You

can create the content on either side indipendently.

The client-side code can provide an infrastructure where the content
generated by the resources can be injected into the web page on the
browser. Moreover on the client-side you could make use of graphics and
innovative representations of the data generated by the resources. In this

manner we may simply implement the so-called Rich Internet Applications.

On the server-side the objects could consist of flat file as well as a

database. The complexity of the object is hidden by its interface. Focusing

- 159 -

Web Applications: technologies and models
on the sigle object/resource for example a database, it is easier to optimize

it and to increase its access speed.
This framework has got a more important positive aspect. You can use

AJAX and REST today, that are exsisting technologies, without throwing

out old technologies and replacing them with new ones.

- 160 -

Web Applications: technologies and models

Bibliography

[4.01]

[4.02]

[4.03]

[4.04]

[4.05]

[4.06]

[4.07]

[4.08]

[4.09]

[4.10]

Kris Hadlock, Ajax for Web Application Developers, Sams
Publishing 2007;

http://www.w3.org/ TR/ XMLHttpRequest/: the

XMLHttpRequest specification defines an API that provides
scripted client functionality for transferring data between a

client and a server;

http://www.json.org: JSON (JavaScript Object Notation) is a

lightweight data-interchange format. It is easy for humans to

read and write. It is easy for machines to parse and generate;

Luciano Noel Castro, Web 2.0, creare siti di nuova

generazione, Sprea Editori S.p.A. 2008;

Roy T. Fielding, Richard N. Taylor, Principled Design of the
Modern Web Architecture, ACM Transactions on Internet

Technology 2002;

Michael Jakl, REST REpresentational State Transfer,

University of Technology Vienna;

Alan Trick, An overview of the REST Architecture, Advanced
Web Programming, 2007;

http://en.wikipedia.org/wiki/Representational State Transfer,

from Wikipedia;

T. Berners-Lee, R. Fielding, and L. Masinter, Uniform resource
identifiers (URI): generic syntax, Technical Report Internet
RFC 2396, IETF, 1998;

“Hypertext transfer protocol — http/1.1”, RFC 2616, IETF,
1999;

- 161 -

Web Applications: technologies and models

[4.11] http://jquery.com/, jQuery JavaScript library;

-162 -

